

FilterMeister Command Reference
Updated February 20, 2020

 For FilterMeister 1.0 mt5c07

Copyright © 2020 by AFH Systems

Written by the many authors of the FilterMeister Wiki
community project: Alex Hunter, Martijn Van Der Lee, Harry
Heim, Kohan Ikin, Guessous Mehdi, J Duncan Suss, Scriveyn,

Martin Koch, Eric von Bayer, Florian, Bob Oat, Pete, byRo, Ron C,
Roberto Muscia and many more.

eBook versions formatted by Kohan Ikin

www.filtermeister.com

http://www.filtermeister.com/

FilterMeister 1.0 Manual
New in FM 1.0

Command Reference

Filter Templates

Demonstration Source Codes

Style Guide

Appendix

Command Reference
Structure

Language

Handlers

Filter Specifications

Variables

Constants

Events (or FME_ constants)

Dialog Functions

Image Functions

System Functions

C Runtime Functions

Syntax

Handlers

A handler is a special-purpose function which is invoked
whenever a specified event or condition occurs. The parameters
for a handler are passed implicitly via global variables. The value
returned by a handler may vary, but is often a Boolean flag
indicating whether or not the handler successfully completed its
mission.

OnInitDialog
is an internal handler, not currently exposed to the Filter
Designer. It is invoked when the plug-in is first loaded, and is
responsible for initializing global variables, creating the
initial filter dialog, and establishing the initial set of controls
in the filter dialog.

OnCtl

is invoked whenever a control is activated which might
require some response, such as initiating the image filtration
process. This handler is also a catch-all for various other
events.

OnFilterStart

is invoked whenever it is time to begin processing (or
"filtering") the current image to produce the preview display
or the final result image.

ForEveryTile

is invoked once for every tile in the image during filter
processing (if OnFilterStart returns false).

ForEveryRow

is invoked once for every row in the current tile, if
ForEveryTile returns false .

ForEveryPixel

is invoked once for every pixel in the current row, if
ForEveryRow returns false .

R, G, B, A

Each of these handlers (R, G, B, or A) is invoked once for each
pixel, if ForEveryPixel returns false for the pixel in
question. There may be multiple instances of each R, G, B, or
A handler, in which case`they will be called in sequence for
each designated pixel.

OnFilterEnd

is called after the last pixel of the last row of the last tile in
the current image has been processed, and is responsible for
performing any post-filtering clean-up actions.

OnDivideCheck

is an internal handler not exposed to the Filter Designer. It is
invoked immediately before each integer division instruction
in the filter code to guard against the possibility of
generating an integer division fault.

OnZeroDivide

is invoked whenever an integer division (or remainder)
operation is about to attempt to divide by 0. The default
OnZeroDivide handler forces the result of the operation to 0,
for compatibility with Filter Factory.

OnDivideOverflow

is invoked whenever an integer division (or remainder)
operation is about to produce a divide overflow error. The
default OnDivideOverflow handler returns a result of
0x80000000 (indefinite-Nan) for the division or remainder
operation.

onCtl
OnCtl() is one of the most useful handlers which doesn't do
anything to the image pixels. It allows you to trap any event
involving a user control and take appropriate action. It's
commonly used to change the controls themselves, making for a
dynamic user interface which adjusts itself depending on actions
taken by the filter's user.

The basic format is:

OnCtl(n): {

 if (n == ?? && e == ??) {
 // *** code goes here ***
 // *** to do things ***
 }

 return false;

} // end of OnCtl()

Where...

-- n specifies the number of the control which was acted upon to
generate the event that sent the program into OnCtl(); i.e., if
something happened with ctl[4] then n will be 4.

-- e is a global system variable which describes the type of event;
the following FilterMeister Events (FME's) with their numerical
values are recognized by the system:

FME_UNKNOWN = 0
FME_ZERODIVIDE = 1

FME_DIVIDEOVERFLOW = 2
FME_CLICKED = 3
FME_DBLCLK = 4
FME_PAGEUP = 5
FME_PAGEDOWN = 6
FME_LINEUP = 7
FME_LINEDOWN = 8
FME_MOUSEOVER = 9
FME_MOUSEOUT = 10
FME_MOUSEMOVE = 11
FME_LEFTCLICKED_DOWN = 12
FME_LEFTCLICKED_UP = 13
FME_RIGHTCLICKED_DOWN = 14
FME_RIGHTCLICKED_UP = 15
FME_TIMER = 16
FME_ZOOMCHANGED = 17 (not yet implemented)
FME_KEYDOWN = 18
FME_KEYUP = 19
FME_VALUECHANGED = 20
FME_SIZE = 21
FME_ENTERSIZE = 22
FME_EXITSIZE = 23
FME_DRAWITEM = 24
FME_CUSTOMEVENT = 25
FME_COMBO_DROPDOWN = 26
FME_COMBO_CLOSEUP = 27
FME_CONTEXTMENU = 28
FME_SETEDITFOCUS = 29
FME_KILLEDITFOCUS = 30
FME_PREVIEWDRAG = 31

* Proper coding style is to use the FME numerical values only for
debugging and testing; in everyday code the symbolic constants
should be used so the code is easier to read.

* While almost all of these are user actions, you can see that
OnCtl() is also where you can trap for divide-by-zero and
overflow problems. (Wrong -- use OnZeroDivide or
OnDivideOverflow instead. -Alex)

* It's important to specify a value to test e against so you really
do the correct thing(s) rather than make possibly invalid
assumptions about what is happening; you can use logical
operators to simultaneously test for several events which might
be occurring with a given control.

Return Value

Use false as the return value if you want to process the image or
preview as a result of the changes made in onCtl(). Otherwise
return true. (Not yet implemented; the return value, although
required, is ignored for now.)

Example:

 OnCtl(n): {
 if (n == CTL_HELP) {
 // ... open helpfile
 return true;
 else if (n == CTL_DO_FUNKY_STUFF){
 /* ... */
 else if (n == CTL_DO_MORE_FUNKY_STUFF){
 /* ... */
 }
 return false;
 }

Other notes

* Because the code in OnCtl() is executed when something is
done with one of the controls, it appears in the program after the

controls have been defined. (Not necessarily true. -Alex)

* Variables can be defined which are local to the handler; these
typically go right after the first line. Follow C conventions. Use
the pre-declared global variables (or user-defined global
variables, once they are implemented) for values needed outside
OnCtl() or for values which are saved across filter invocations
within a single host session. (See FMML Yahoo Group message
#256 for these.)

OnFilterStart

Syntax

OnFilterStart: <compound-statement></compound-statement>

Return

false if filter processing is to continue with the ForEveryTile
handler, or true to abort further filter processing (though this
latter option is currently ignored in FM 0.4.20).

Description

The OnFilterStart handler is invoked at the start of each filter
run, just before the ForEveryTile , ForEveryRow , ForEveryPixel ,
and R, G, B, A handlers are called. The OnFilterStart handler is
a good place to perform one-time calculations at the start of a
filter run, check for valid control inputs, valid image mode, etc.

Comment

The default OnFilterStart handler simply returns false , passing
control to the ForEveryTile handler for every tile in the image or
preview.

Example

You can test the current image mode in the OnFilterStart
handler, and abort the invocation if the image mode is
inappropriate. For example:

OnFilterStart:{
 if (imageMode != RGBMode) {

 ErrorOk("Not an RGB image.");
 doAction(CA_CANCEL); /* for now, until return true
works correctly */
 return true; /* abort filter processing */
 }
 return false; /* continue with ForEveryTile */
}

Note that we added a call to doAction to explicitly cancel the
filter run, since return true does not yet correctly abort the
filter run. Once this is fixed, the call to doAction can be removed.

See Also

handlers, ForEveryTile, ForEveryRow, ForEveryPixel,
OnFilterEnd

ForEveryPixel

Syntax

ForEveryPixel:

Return

true if processing is complete for this pixel, else false if the R,
G, B, A handlers should be called next for individual processing
of each channel for this pixel.

Description

If the ForEveryRow handler returns false , then this handler will
be called for every pixel in the current row, from left to right.

Default handler

The default ForEveryPixel handler simply returns false , passing
control to the R, G, B, A handlers for every pixel.

Example

ForEveryPixel: {
 return true; /* processsing complete for this pixel
*/
}

See Also

handlers, ForEveryTile, ForEveryRow

ForEveryRow
(not yet implemented)

Syntax

ForEveryRow:

Return

true if processing is complete for this row, else false if the
ForEveryPixel handler should be called next for individual
processing of each pixel in this row.

Description

If the ForEveryTile handler returns false . then this handler will
be called for every row in the current tile, from top to bottom.
This handler is a good place to call the testAbort or
updateProgress function.

Default handler

The default ForEveryRow handler simply calls updateProgress to
update the progress bar and test for an abort condition, and then
returns false , passing control to the ForEveryPixel handler for
every pixel in this row.

Example

ForEveryRow: {
 updateProgress(row, rows); /* update progress bar
*/

 return true; /* processsing complete for this row */
}

See Also

ForEveryTile, ForEveryPixel, handlers

ForEveryTile

Syntax

ForEveryTile:

Return

true if processing is complete for this tile, else false if the
ForEveryRow handler should be called next for individual
processing of each row in this tile.

Description

This handler is called for every tile in an image from left to right,
then top to bottom.

Default handler

The default ForEveryTile handler simply returns false , passing
control to the ForEveryRow handler for every row in this tile.

Example

ForEveryTile: {
 return true; /* processsing complete for this tile
*/
}

See Also

ForEveryRow, ForEveryPixel, handlers

OnFilterEnd

Syntax

OnFilterEnd: <compound-statement></compound-statement>

Return

false if the default OnFilterEnd handler code is to be invoked, or
true to prevent the default handler from being invoked (though
this latter option is currently ignored in FM 0.4.20).

Description

The OnFilterEnd handler is invoked at the end of each filter run,
after all calls to the ForEveryTile , ForEveryRow , ForEveryPixel ,
and R, G, B, A handlers. The OnFilterEnd handler is a good
place to perform any necessary cleanup at the end of a filter run,
such as resetting the progress bar indicator.

Comment

The default OnFilterEnd handler calls playSoundWave(NULL) to
terminate any wave file that may still be playing.

Example

You can use the OnFilterEnd handler to reset the progress bar at
the end of a filter run.

OnFilterEnd: {

 /* reset the progress bar to 0% */
 updateProgress(0, 100);

 /* allow the default OnFilterEnd handler to run also
*/
 return false;
}

See Also

handlers, OnFilterStart, ForEveryTile, ForEveryRow,
ForEveryPixel

Structure
Page should describe the generic structure of a FM program. Are
these sections named in any way?

// Section 1: language specifier
%ffp

// Section 2: identification & control definition
title: "Hello world"

ctl[0]: STANDARD

// Section 3: handlers
OnFilterStart:
{
 Info("Hello world");
}

I believe this order of sections is mandatory, so we'd better
document it :)

Language Keywords

Flow control

break - Stops execution of the innermost looping or conditional
block of code and continue processing from the statement
immediately following this block.

case - Used in conjunction with the switch statement to specify
a possible value to match against the variable specified in the
switch statement.

continue - Stops execution of the innermost looping block of
code, iterate in case of a for loop and continue the loop from the
first statement in the looping block of code.

default - Used in conjunction with the switch statement to
specify an alternative if none of the case statements match.

do - Used in conjunction with the while statement when testing
after execution of the controlled block of code.

else - Used in conjunction with the if statement to execute a
block of code when the Boolean expression given in the if
statement does not evaluate to true .

for - Executes a block of code based on the value of a specified
variable and its continual alteration at the end of each iteration.

if - Conditionally execute a block of code when a Boolean
expression evaluates to true .

return - Return from a handler, optionally with a value to be
passed along to the system.

sizeof - Returns the size in bytes of a specific type or variable.

switch - Executes any of a number of blocks of code or a
consecutive number of block of code depending on whether the
variable specified in the switch statement matches the value of a
case statement.

while - Repeat a specific block of code as long as a specific
Boolean expression evaluates to true .

Constants

false - Designates a state in which a value is considered logically
false.

true - Designates a state in which a value is considered logically
true.

NULL - Designates a pointer which points to nothing.

Type declaration

bool

char

const

double

dword

float

int

long

short

signed

void

word

switch example

switch (ctl(0))
{
 case 0:
 ... Your code
 break;

 case 1:
 ... Your code
 break;

 case 2:
 ... Your code
 break;

 case 3:
 ... Your code
 break;

 default:
 ... Your code
 break;
}

Dialog Functions

Built-in Controls

Particular FM controls have predefined indices, indicated by the
constants below:

CTL_BACKGROUND

CTL_CANCEL

CTL_EDIT

CTL_FRAME

CTL_HOST

CTL_LOGO

CTL_OK

CTL_PREVIEW

CTL_PROGRESS

CTL_ZOOM

Notice: CTL_USER_LAST corresponds to the last available user
control index. Check this value to ensure the index you use is not
already reserved by a particular FM control.

User Control Properties

BITMAP - Creates a bitmap image

CHECKBOX - Creates a checkbox

COMBOBOX - Creates a pull-down list/combo box

EDIT - Creates a text editbox

FRAME - Creates a frame/border

GROUPBOX - Creates a groupbox for grouping radio buttons

ICON - Creates an icon image

IMAGE - Creates a transparent bitmap image

LISTBOX - Creates a listbox

METAFILE - Creates a vector image

MODIFY - Changes the properties of a predefined control

NONE - Removes a predefined user control

OWNERDRAW - Creates an actionable colored/transparent
rectangle control

PUSHBUTTON - Creates a standard button

RADIOBUTTON - Creates a single radio button

RECT - Creates a rectangle

SCROLLBAR - Creates a scrollbar on its own

SLIDER - Creates a trackbar with a text label and numeric edit
control

STANDARD - Creates a scrollbar with a text label and numeric
edit control

STATICTEXT - Creates a text label

TAB - Creates a tab control for grouping controls into tab panels

TRACKBAR - Creates a trackbar (a kind of scrollbar with ticks)

User Control Functions

checkCtlFocus - Checks if a control currently has user focus.

clearCtlBuddyStyle - Clears the window style of labels and edit
boxes on standard and slider controls.

clearCtlProperties - Clears a previously set property from a
control.

createCtl - Creates a new user interface control at runtime.

ctlEnabled - Determines if a control is enabled.

deleteCtl - Deletes a user control.

deleteFont - Deletes a font object.

deleteCtlItem - Deletes an item from a Listbox, Combobox or
Tab control.

deleteCtlItems - Deletes all items from a Listbox, Combobox or
Tab control.

doAction - Performs one of several predefined actions.

enableCtl - Enables, disables & hides user controls.

getCtlClass - Returns the type of a specific user control.

getCtlColor - Returns the current color of a control.

getCtlCoord - Get the mouse coordinates of any control.

getCtlItemCount - Get the number of items in a Listbox,
Combobox or Tab control

getCtlItemText - Get the text of an item in a Listbox, Combobox
or Tab control.

getCtlPos - Get the current position and size of any control.

getCtlRange - Gets the minimum or maximum of the range of a
user control.

getCtlTab - Gets the tab control or tab sheet that a user control
has been assigned to.

getCtlText - Get the text associated with a user control.

getCtlVal - Returns the current value of a user control.

getPreviewCoordX - Returns the x coordinate in the image above
which the mouse pointer is placed.

getPreviewCoordY - Returns the y coordinate in the image above
which the mouse pointer is placed.

getPreviewCursor - Returns the resource number of the current
preview cursor

mouseOverWhenInvisible - Enables & disables event triggering
for disabled or invisible controls

refreshCtl - Redraws or updates a certain control.

scrollPreview - Scrolls the preview window in a given position
inside the full image.

setClickDrag - Changes how the user can move the image in the
preview window.

setCtlAction - Sets the action performed when a user control is
activated.

setCtlAnchor - Changes how a control is repositioned when the
dialog is resized.

setCtlBuddyStyle - Sets the window style of labels and edit boxes
on standard and slider controls.

setCtlColor - Changes the background color of the user control.

setCtlDivisor - Sets the number of decimal places a control
appears to have.

setCtlEditSize - Changes the size of the text edit control of a
slider.

setCtlFocus - Sets which control has the user focus.

setCtlFont - Sets the font of a user control.

setCtlFontColor - Changes the color of the user control's text.

setCtlGamma - Changes the curve of how quickly the slider
changes values.

setCtlImage - Changes the image displayed by a control at
runtime.

setCtlLineSize - Changes the control's line jump unit.

setCtlPageSize - Changes the control's page jump unit.

setCtlPixelPos - Resizes and repositions a control on the dialog
interface (in pixels).

setCtlPos - Resizes and repositions a control on the dialog
interface (in DBUs).

setCtlProperties - Sets the properties of a control.

setCtlRange - Changes the range of values a user control can
return.

setCtlScripting - Enables & disables Photoshop scripting for a
user control.

setCtlTab - Assigns a control to the sheet of a tab control.

setCtlText - Sets the text property of the user control.

setCtlTextv - Sets the text property of the user control to a
formatted string.

setCtlTicFreq - Sets the frequency of tick marks in a TRACKBAR
control.

setCtlToolTip - Sets the text that appears when the mouse
hovers over the control.

setCtlVal - Sets the value associated with the control.

setPreviewCursor - Changes the cursor displayed when the
mouse is over the preview window.

setZoom - Sets the zoom level of the filter preview image.

testAbort - Tests for a user-requested abort.

updateAnchors - Updates the anchors for all user controls.

updatePreview - Updates the filter preview image.

updateProgress - Updates the filter progress bar.

Message & Dialog Windows

chooseColor - Invokes the host application's default color picker
dialog

Error - Displays an error box dialog with Cancel, Retry and
Ignore buttons

ErrorOk - Displays an error box with an OK button

Info - Displays an information box dialog

msgBox - Displays a custom configured message box

Warn - Displays a warning box dialog

YesNo - Displays a message box containing Yes and No buttons

YesNoCancel - Displays a message box containing Yes, No and
Cancel buttons

Dialog String Manipulation Functions

appendEllipsis - Returns a string with an ellipsis ("...") appended.

formatString - Returns a string with substitutions made for
designated 2-character substrings

stripEllipsis - Returns a string with any trailing ellipsis removed.

Miscellaneous Dialog Functions

getAsyncKeyState - Determines whether a key is pressed or not.

getDisplaySettings - Finds the bit depth, resolution and refresh
rate of the screen.

getSysColor - Gets the color of a specified display element.

HDBUsToPixels - Converts horizontal dialog box units to pixels.

playSoundWave - Plays a sound file.

playSoundWaveLoop - Plays a sound file repeatedly.

playSoundWaveSync - Plays a sound and waits until it finishes
playing.

triggerEvent - Sets off a dialog, timer or internal event.

VDBUsToPixels - Converts vertical dialog box units to pixels.

Control drawing functions

Starting/stopping

You can draw in a number of different modes.

In the default mode, you draw directly to the control on screen.

startSetPixel - Start drawing on an OWNERDRAW

endSetPixel - Stop drawing

Meta

getSetPixelHeight - Returns the height of the control canvas or
buffer in pixels. Only works between a startSetPixel* and
endSetPixel* pair.

getSetPixelWidth - Returns the width of the control canvas or
buffer in pixels. Only works between a startSetPixel* and
endSetPixel* pair.

Pixels

getPixel - Read single pixel

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getpixel.html

setPixel - Set single pixel

Text

setFont - lets you choose the font name, its size, angle, boldness,
and italics

setText - lets you draw a certain text with the chosen font, color
and alignment

setTextv - Identical to setText but with support for formatted
text.

Bitmaps

setBitmap - Draw a specified bitmap on the current
ownerdraw/buffer canvas at the specified coordinates.

setBitmapTransparent - Draw a bitmap on the current
ownerdraw/buffer canvas with a transparent color.

setBitmapStretch - Draw a stretched or shrunk bitmap on the
current ownerdraw/buffer canvas.

setBitmapTile - Draw part of the specified bitmap on the current
ownerdraw/buffer canvas at the specified coordinates.

setBitmapStretchTransparent - Draw a stretched or shrunk
bitmap on the current ownerdraw/buffer canvas with a
transparent color.

Shapes

setFill - fills the whole ownerdraw control with a certain color
e.g. setFill(getCtlColor(n))

setLine - draws a line

setRectFill - draws a filled rectangle

setRectGradient - draws a gradient into the rectangle

Filter Dialog Window Functions

checkDialogFocus - Checks if the filter dialog currently has
keyboard focus.

clearDialogEvent - Disables processing of init, cancel or keypress
events.

createCircularRgn - Creates a simple circular region, for use
with setDialogRegion.

createEllipticRgn - Creates an elliptical region, for use with
setDialogRegion.

createMenubarRgn - (not implemented)

createPolyRgn - Creates an arbitrary polygon region object from
a list of pairs of vertices.

createRectRgn - Creates a simple rectangular region, for use
with setDialogRegion.

createRoundRectRgn - Creates a rectangular region with
rounded corners, for use with setDialogRegion.

enableToolTipBalloon - Enables or disables speech balloon style
tool tips for all controls.

getAppTheme - Checks if the host application has XP/Vista style
themes enabled.

getDialogHeight - Gets the current width of the dialog in vertical
DBUs.

getDialogPos - Gets the position and size of the filter dialog
window.

getDialogWidth - Gets the current width of the dialog in
horizontal DBUs.

lockWindow - Enables / disables drawing in the filter dialog area.

refreshRgn - Redraws or updates a certain region of the filter
dialog.

refreshWindow - Redraws or updates the filter dialog.

setDialogColor - Sets the background color of the filter dialog.

setDialogDragMode - Sets whether the filter dialog can be
dragged by the title bar and/or background.

setDialogEvent - Enables processing of init, cancel and keypress
events.

setDialogGradient - Sets a gradient as the background color of
the filter dialog.

setDialogImage - Changes the image used in the filter dialog
background.

setDialogImageMode - Sets whether the dialog background
image is tiled or stretched.

setDialogMinMax - Sets the minimum and maximum dimensions
of the filter dialog.

setDialogPos - Sets the position and size of the filter dialog
window.

setDialogRegion - Sets the clipping region (outline) of the filter
dialog.

setDialogShowState - Shows and hides the main filter dialog
window.

setDialogSizeGrip - Shows and hides the resizing size grip
control.

setDialogStyle - Sets various styles of the dialog.

setDialogText - Sets the caption in the title bar.

setDialogTextv - Sets the caption in the title bar with printf-style
formatting.

Events or FME_ constants

All constants that begin by the FME_ prefix, are used to identify
events, i.e actions done by the user.They must be used inside the
OnCtl handler.

FME_CANCEL

FME_CHANGED

FME_CLICKED

FME_COMBO_CLOSEUP

FME_COMBO_DROPDOWN

FME_CONTEXTMENU

FME_CUSTOMEVENT

FME_DRAWITEM

FME_EXITSIZE

FME_INIT

FME_KEYDOWN

FME_KEYUP

FME_KILLEDITFOCUS (deprecated)

FME_KILLFOCUS

FME_LEFTCLICKED_DOWN

FME_LEFTCLICKED_UP

FME_MOUSEMOVE

FME_MOUSEOUT

FME_MOUSEOVER

FME_PREVIEWDRAG

FME_RIGHTCLICKED_DOWN

FME_RIGHTCLICKED_UP

FME_SETEDITFOCUS

FME_SETFOCUS (deprecated)

FME_SIZE

FME_TIMER

FME_VALUECHANGED (deprecated)

Constants

ALTERNATE

BLACKONWHITE

COLORONCOLOR

DIM_EXACT

DIM_STRETCHED

DIM_TILED

HALFTONE

IDABORT

IDCANCEL

IDIGNORE

IDNO

IDOK

IDRETRY

IDYES

MAXSTRETCHBLTMODE

RGN_AND

RGN_COPY

RGN_DIFF

RGN_MAX

RGN_MIN

RGN_OR

RGN_XOR

STRETCH_ANDSCANS

STRETCH_DELETESCANS

STRETCH_HALFTONE

STRETCH_ORSCANS

WHITEONBLACK

WINDING

See Also

Command Reference, Image Functions, System Functions, C
Runtime Functions

Image Functions

Getting and Setting Pixels

iget

pget

pgetp

pgetr

pset

psetp

psetr

set_psetp_mode

src

src0 - for Adobe Premiere compatibility, identical to src

src1 - for Adobe Premiere compatibility, identical to src

srcp

tget

tgetp

tgetr

tset

tsetp

tsetr

t2get

t2getp

t2getr

t2set

t2setp

t2setr

t3get

t3getp

t3getr

t3set

t3setp

t3setr

t4get

t4getp

t4getr

t4set

t4setp

t4setr

Selections

haveMask - Boolean variable that is true when a non-rectangular
area has been selected.

msk

isFloating - Boolean variable that is true when the selection is
floating.

Notice: The test imageWidth==filterRectWidth &&
imageHeight==filterRectHeight allows to know if only a part of
the whole picture has been selected.

Color Space Conversions

rgb2cmyk

rgb2hsl

rgb2iuv

rgb2lab

rgb2ycbcr

cmyk2rgb

hsl2rgb

iuv2rgb

lab2rgb

ycbcr2rgb

Blurs And Convolutions

cnv

cnv0 - for Adobe Premiere compatibility, identical to cnv

cnv1 - for Adobe Premiere compatibility, identical to cnv

cnvX

cnvY

xyzcnv

Effects

blend - blends two color values according to a variety of blend
modes

contrast

gamma

grad2D

gray - converts RGB to a grayscale value using provided weight
values

phaseshift

posterize

saturation

setGamma

solarize

tone

Mathematical Effects

cosineInterpolate

linearInterpolate

quickFill

quickMedian

sinbell

tri

tricos

Array and Cell Functions

allocArray - Allocate an Array.

allocArrayPad - Allocate an Array with padding.

cell_initialize - (deprecated)

cell_preserve - Preserve cell values across filter invocations.

copyArray - Copy one Array to another.

ffillArray - Fill an Array with a floating-point value.

fgetArray - Get the floating-point value stored in an Array
element.

fillArray - Fill an Array with an integer value.

fputArray - Store a floating-point value into an Array element.

freeArray - Release storage when an Array is no longer needed.

get - Get the integer value stored in a cell.

getArray - Get the integer value stored in an Array element.

getArrayDim - Get the dimension(s) of an Array.

getArrayString - Get the string value stored in an Array element.

put - Store an integer value into a cell.

putArray - Store an integer value into an Array element.

putArrayString - Store a string value into an Array element.

set_array_mode - Set Array memory allocation mode.

Other Image Functions

Aval - Get the alpha component of an RGBA pixel value

Bval - Get the blue component of an RGB pixel value

Gval - Get the green component of an RGB pixel value

RGB

RGBA

Rval - Get the red component of an RGB pixel value

add

c2d

c2m

ctl

dif

fc2d

fc2m

fr2x

fr2y

getImageTitle - Get the title of the current image as a string

map

mix

mix1

mix2

r2x

r2y

rnd

rst

scl

sub

testAbort

bCircle

bRect

bRect2

bTriangle

egw

egm

pointer_to_buffer

set_edge_mode

See Also

Command Reference, Dialog Functions, System Functions, C
Runtime Functions, Constants

System Functions

Registry Functions

setRegRoot - Sets the the current registry root key to either
HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER

getRegRoot - Gets the current registry root

setRegPath - Sets the the current registry path

getRegPath - Gets the the current registry path

putRegString - Stores a string value into the registry

getRegString - Fetches a C-style character string from the
Windows Registry

enumRegValue - Enumerates the names of all values stored
under the current key

deleteRegValue - Deletes specified value under the current
registry key.

Filesystem Functions

getSpecialFolder - Finds the location of Windows-specific folders
(eg current user's My Documents folder)

findFirstFile - Searches a directory for a file or subdirectory with
a specific name

findNextFile - Finds the next file in a search started by
findFirstFile

findClose - Closes a file search handle opened by findFirstFile

chdir - changes the working folder

getcwd - returns the current working folder

mkdir - creates a new folder

rmdir - deletes a folder

Memory Functions

allocHost - Allocates memory through the host application

lockHost - Gets a pointer to a memory block allocated by the
host application

freeHost - Frees memory allocated by the host application

System Functions

getDisplaySettings - Determines the bit depth, resolution and
refresh rate of the screen

getAsyncKeyState - Determines whether a key is up or down at
the time the function is called

getSysMem - Returns some values about the system memory.

getWindowsVersion - Detects the currently running Windows
version

setTimerEvent - Activates or deactivates one of 10 available
timers

shellExec - Executes a Windows shell command

sleep - Delays execution of the filter for a specific period of time

Locale Functions

getUserDefaultLCID

getSystemDefaultLCID

getLocaleInfo

DLL Access Functions

loadLib - Loads a DLL into memory

getLibFn - Looks up a function in a loaded DLL

callLib - Calls an int-valued CDECL or STDCALL function in a
loaded DLL

fcallLib - Calls a double-valued CDECL or STDCALL function in a
loaded DLL

freeLib - Releases a DLL from memory

Multithreading Functions

countProcessors - Returns the number of (virtual or physical)
processors in your system.

triggerThread - Creates a worker thread to execute the OnCtl
handler.

waitForThread - Waits for one (or all) worker threads to
complete.

isThreadActive - Tests whether a specific (or any) worker thread
is still active.

getThreadRetVal - Retrieves the exit code value of a completed
worker thread.

terminateThread - Terminates a specified (or all) worker
thread(s).

Critical Section Functions

createCriticalSection - Allocates and initializes a Critical Section.

enterCriticalSection - Enters a Critical Section, first waiting
until no other worker thread is inside.

tryEnterCriticalSection - Enters a Critical Section immediately if
available; returns false if the Critical Section is currently
occupied by another worker thread.

leaveCriticalSection - Leaves a Critical Section, permitting
another waiting worker thread to enter it.

deleteCriticalSection - Deletes a Critical Section and all its
resources when no longer needed.

See Also

Command Reference, Dialog Functions, Image Functions, C
Runtime Functions

C Runtime Functions
Besides the large number of graphics- or GUI-specific functions
in FilterMeister, a large number of the standard C runtime
functions are available to the developer. Almost all of the
functions defined in the C99 standard are provided and even
some common extensions are at your disposal.

The most notable omissions are the well-known gets and scanf .
Since these require some sort of console-based input, which
FilterMeister currently does not support, these cannot be
implemented.

File I/O and file manipulation functions

clearerr - Clears the error indicator for a stream

fclose - Closes a stream

fcloseall - Closes all open streams

feof - Tests for end of file on a stream

ferror - Tests for error on a stream

fflush - Flushes a stream

fgetc - Reads a character from a stream

fgetpos - Get file position

fgets - Reads a string from a stream

flushall - Flushes all streams

fopen - Opens a stream

fputc - Writes a character to a stream

fputs - Writes a string to a stream

fread - Reads unformatted data from a stream

fseek - Moves file position to a given location

fsetpos - Sets the position indicator of a stream

fwrite - Writes unformatted data to a stream

getc - Reads a character from a stream

printf - Writes formatted data to a message box.

putc - Writes a character to a stream

remove - Deletes a file

rename - Renames a file

rewind - Moves file pointer to beginning of stream

snprintf - Writes formatted data to string up to a specified
length

sprintf - Writes formatted data to string

tmpfile - Creates a temporary file that is deleted on program exit

tmpnam - Creates a temporary file name

Data conversion functions

abs - Absolute value of integer

strtod - Converts string to double

strtol - Converts string to long

strtoul - Converts string to unsigned long

Memory management functions

calloc - Allocate memory block with zero fill

expand - Expands a memory block in place

free - Free memory block

malloc - Allocate memory block

msize - Returns the size of a memory block in bytes

realloc - Re-size memory block

sizeof - Returns the size of an object type in bytes

Memory manipulation functions

memcpy - Copies characters until character or number of
characters has been copied

memchr - Return a pointer to the first occurrence, within a
specified number of characters

memcmp - Compare a specified number of characters from two
memory locations

memicmp - Compare a specified number of characters from two
memory locations without regard to case (Unix-specific function)

memmove - Copy a specified number of characters from one
memory location to another

memset - Set a region of memory to a specified character

String manipulation functions

strcat - Concatenate two strings

strchr - Find the first occurrence of a given character in a string

strcmp - Compare two strings

strcpy - Copy one string to another

strcspn - Find any one of a set of characters in a string

strdup - Duplicate a string

strerror - Return string describing error code

stricmp - Compare two strings without regard to case
(Microsoft-specific function)

strlen - Get the length of a string

strlwr - Convert a string to lower case

strncat - Concatenate the specified number of characters from
one string to another

strncmp - Compare the specified number of characters in two
strings

strncpy - Copy the specified number of characters from one
string to another

strnicmp - Compare the specified number of characters in two
strings without regard to case

strnset - Set the specified number of characters in a string to a
given character

strpbrk - Find the first occurrence of a character from one string
in another

strrchr - Find the last occurrence of a character in a string

strrev - Reverse a string

strset - Set all characters in a string to a given character

strspn - Find the first substring from a given character set in a
string

strstr - Find the first occurrence of a string in another string

strtok - Find the next token in a string

strupr - Convert a string to upper case

strxfrm - Transforms a string according to the current locale

Floating-point math

ceil - Floating point ceiling(x)

chop - Truncate floating point value towards 0.0.

exp - Floating point exponent(x)

fabs - Floating point absolute value(x)

floor - Floating point floor(x)

fmax - Find the maximum of two floating point numbers

fmin - Find the minimum of two floating point numbers

fmod - Floating point remainder (x/y)

fsin - Floating point sine(x)

hypot - Euclidean distance function, calculate the hypothenuse
or a right-angled triangle.

ldexp - The value of x * 2**n

log - Natural log(x)

log10 - Log base 10 of x

max - Max of(a, b)

min - Min of(a, b)

modf - Split x into integral and fractional parts, each with the
same sign as x.

pow - The value of x**y

rand - Generate a pseudo random number

round - Round floating point value to nearest or even integral
value. (Not yet implemented.)

sin - Implemented as fsin.

sqr - Integer square root(x)

sqrt - Floating point square root(x)

srand - Set random number seed

Process management and control

abort - Abort the current process

Time and date functions

clock - Returns the processor time since the beginning of
execution

time - Returns the current calendar time

strdate - Converts the current date to a string

strtime - Converts the current time to a string

See Also

Command Reference, Dialog Functions, Image Functions,
System Functions

C Miscellaneous Constants
These constants are specified in the C standard which
FilterMeister aims to support; as such, they are available for
developers.

_MAX_DIR - Maximum size in characters of a directory name
(e.g., "adobe/photoshop/plug-ins").

_MAX_DRIVE - Maximum size in characters of a drive name
(e.g., "C:").

_MAX_EXT - Maximum size in characters of a file extension
(e.g., ".8bf").

_MAX_FNAME - Maximum size in characters of a file name (e.g.,
"myplugin").

_MAX_PATH - Maximum size in characters of a path name (e.g.,
"adobe/photoshop/plug-in/").

CLOCKS_PER_SEC

EDOM

ERANGE

EXIT_FAILURE

EXIT_SUCCESS

NULL - Constant for the integer value 0, representing a pointer
to nothing.

RAND_MAX - Maximum value generated by the integer random
number generator.

C Mathematical Constants
These constants are specified in the C standard which
FilterMeister aims to support; especially in the library "math.h".

M_E - Same value as exp(1.0)

M_LOG2E - Same value as 1.0/log(2.0)

M_LOG10E - Same value as 1.0/log(10.0)

M_LN2 - Same value as log(2.0)

M_LN10 - Same value as log(10.0)

M_PI - The numerical value of the ratio of the circumference of
a circle to its diameter (approximately 3.14159). Usually
represented by the Greek letter Pi.

M_PI_2 - Same value as M_PI/2.0

M_PI_4 - Same value as M_PI/4.0

M_1_PI - Same value as 1.0/M_PI

M_2_PI - Same value as 2.0/M_PI

M_2_SQRTPI - Same value as 2.0/sqrt(M_PI)

M_SQRT2 - Same value as sqrt(2.0)

M_SQRT1_2 - Same value as 1.0/sqrt(2.0)

Image constants
These constants contain information about the image or preview
being processed.

D - Maximum angle, always "1023". Datatype "int".

imageHRes - The horizontal DPI (Dots Per Inch) setting of the
source image. Datatype "double".

imageVRes - The vertical DPI (Dots Per Inch) setting of the
source image. Datatype "double".

imageWidth - Width of the original image in pixels, or width of
the floating selection. Datatype "int".

imageHeight - Height of the original image in pixels, or width of
the floating selection. Datatype "int".

wholeWidth - Width of the original image in pixels, regardless of
floating selection. Datatype "int".

wholeHeight - Height of the original image in pixels, regardless
of floating selection. Datatype "int".

X - Width of the currently processed image in pixels: on the run
it's the (preview zoomratio dependent) PROXY IMAGE width but
it's the original image width when effect is actually applied.
Datatype "int".

Y - Height of the currently processed image in pixels: on the run
it's the (preview zoomratio dependent) PROXY IMAGE height but
it's the original image height when effect is actually applied.
Datatype "int".

Z - Number of available channels. Number of color channels +
one option channel if image is not the background layer.
Datatype "int".

Processing constants

These constants contain information about how the image is
being processed.

bgColor - The host application's current background color as an
RGB triple stored in an integer

DESIGNTIME - true if the filter is running in the FilterMeister
development environment, false if a compiled filter plugin.

doingProxy - true if the filter is running in a preview dialog
window, and false if the filter is applying the effect to the image
in the host program.

doingScripting - true if the filter is running via a script / smart
filter, false otherwise

fgColor - The host application's current foreground color as an
RGB triple stored in an integer

filterCase - The type of data being filtered (eg Flat with no
selection, Flat with a selection, etc)

filterInstallDir- full directory path to where the plugin is
installed

filterUniqueID - a unique id / GUID for the plugin, for use by
plugins that support scripting

FMC_TARGET- set to 32 for 32-bit plugins, and 64 for 64-bit
plugins. Only available from FM1.0 Beta9g MT4 onwards.

haveMask - Boolean variable that is true when a non-rectangular
area has been selected.

hostSerialNumber - the serial number of the host application, if
supported by the host program

hostSig - a value that can sometimes be used to identify the host
program the plugin is running in (eg particular Photoshop
versions)

imageMode - The mode of the image being filtered (eg Bitmap,
Grayscale, RGB, CMYK etc)

isFloating - Boolean variable that is true when the selection is
floating.

planes - the number of planes/channels in the image, including
alpha & mask planes

planesWithoutAlpha - the number of color planes/channels in
an image (excludes alpha & mask planes)

platformdata - a value that can sometimes be used to identify a
particular combination of host program & operating system

samplingSupport - indicates whether the host supports non-1:1
sampling for the proxy preview

scaleFactor - an integer representing the current zoom/scale of
the preview proxy window (eg 1 for 100%, 3 for 33%, 5 for 20%)

zoomFactor - a integer between 1 and 16 to indicate the current
zoom factor of the proxy preview window, or 0 if the proxy zoom
factor has not yet been set. (In the current implementation, the
zoomFactor variable is essentially the same as the built-in
scaleFactor variable.)

Events or FME_ constants

All constants that begin by the FME_ prefix, are used to identify
events, i.e actions done by the user. They must be used inside the
OnCtl handler.

FME_CANCEL

FME_CHANGED

FME_CLICKED

FME_COMBO_CLOSEUP

FME_COMBO_DROPDOWN

FME_CONTEXTMENU

FME_CUSTOMEVENT

FME_DRAWITEM

FME_EXITSIZE

FME_INIT

FME_KEYDOWN

FME_KEYUP

FME_KILLEDITFOCUS (deprecated)

FME_KILLFOCUS

FME_LEFTCLICKED_DOWN

FME_LEFTCLICKED_UP

FME_MOUSEMOVE

FME_MOUSEOUT

FME_MOUSEOVER

FME_PREVIEWDRAG

FME_RIGHTCLICKED_DOWN

FME_RIGHTCLICKED_UP

FME_SETEDITFOCUS

FME_SETFOCUS (deprecated)

FME_SIZE

FME_TIMER

FME_VALUECHANGED (deprecated)

Filtermeister Limits
MAX_LABEL_SIZE -max number of chars in a control label or
dropdown list

MAX_TOOLTIP_SIZE -max number of chars in a tooltip

MAX_SOURCE_CODE_SIZE -max number of chars allowed by
the source editor

MAX_DLITS -size of floating-point/string literal pool (in 8 byte
units)

MAX_LOCALS -max number of local variables in a handler or
user-defined function

MAX_TEMPS -max number of compiler-generated temporaries
per handler or user-defined function

MAX_CASE_LABELS -max number of case labels per switch
statement

N_CELLS -number of anonymous get/put cells

N_CTLS -max number of controls (user-defined and system
reserved)

CTL_LAST_USER -index of last available user-defined control

Events or FME_ constants

All constants that begin by the FME_ prefix, are used to identify
events, i.e actions done by the user. They must be used inside the
OnCtl handler.

FME_CANCEL

FME_CHANGED

FME_CLICKED

FME_COMBO_CLOSEUP

FME_COMBO_DROPDOWN

FME_CONTEXTMENU

FME_CUSTOMEVENT

FME_DRAWITEM

FME_EXITSIZE

FME_INIT

FME_KEYDOWN

FME_KEYUP

FME_KILLEDITFOCUS (deprecated)

FME_KILLFOCUS

FME_LEFTCLICKED_DOWN

FME_LEFTCLICKED_UP

FME_MOUSEMOVE

FME_MOUSEOUT

FME_MOUSEOVER

FME_PREVIEWDRAG

FME_RIGHTCLICKED_DOWN

FME_RIGHTCLICKED_UP

FME_SETEDITFOCUS

FME_SETFOCUS (deprecated)

FME_SIZE

FME_TIMER

FME_VALUECHANGED (deprecated)

All global, session persistent variables that are
available in FilterMeister

int i0, i1, i2, i3, i4, i5, i6, i7, i8, i9;
int j0, j1, j2, j3, j4, j5, j6, j7, j8, j9;
int k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
double x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
double y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
double z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
char str0[256];
char str1[256];
char str2[256];
char str3[256];
char str4[256];
char str5[256];
char str6[256];
char str7[256];
char str8[256];
char str9[256];

They are initialized in DoStart (see the Photoshop SDK). They are
usually initialized to zero, but don't count on that. They may have
random values in other hosts than Photoshop. Initialize them in
OnFilterStart when the filter is executed for the first time.

__fgetArray

Syntax

double __fgetArray(int nr, int x, int y, int z)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

Return

Returns the double floating-point value that was stored at the
specified coordinates in the array. Warning: If the specified
coordinates lie outside the array, the plug-in may crash.

Description

This function lets you read a floating-point value from an array.
This is a fast version of fgetArray without any error checking or
memory checking. As it does not do any border checking, it may
produce error messages or even crashes if not used properly.

Example

See allocArray for an example of how to allocate arrays and use
the similar fgetArray function.

See Also

__getArray, __fputArray, allocArray, freeArray, putArray,
getArrayDim, copyArray

__fputArray

Syntax

double __fputArray (int nr, int x, int y, int z, double
dval)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

dval
Floating-point value that will be stored at the specified
coordinates in the array.

Return

Returns 1 if the function succeeded, or 0 if there are more than 4
bytes per array cell. Warning: If the specified coordinates lie
outside the array, the plug-in may crash.

Description

Lets you store a floating-point value in an array. This is a fast
version of fputArray without any error checking or memory
checking. As it does not do any border checking, it may produce
error messages or even crashes if not used properly.

When storing a value into an Array with byte-size 2, the value will
be converted to 16-bit half. For an Array of byte-size 4, the value

is converted to a 32-bit float. If the byte-size is not 2, 4, or 8, a
value of 0 is returned to indicate failure.

Example

See fgetArray.

See Also

__putArray, __fputArray, allocArray, freeArray, putArray,
getArrayDim, copyArray

__getArray

Syntax

int __getArray(int nr, int x, int y, int z)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

Return

Returns the value that was stored at the specified coordinates in
the array. Warning: If the specified coordinates lie outside the
array, the plug-in may crash.

Description

Reads a value from an array. This is a fast version of getArray
without any error checking or memory checking. As it does not
do any border checking, it may produce error messages or even
crashes if not used properly.

Example

See allocArray for an example of how to allocate arrays and use
the similar getArray function.

See Also

__putArray, __fgetArray, allocArray, freeArray, putArray,
getArrayDim, copyArray

__putArray

Syntax

int __putArray (int nr, int x, int y, int z, int val)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

val
Value that will be stored at the specified coordinates in the
array.

Return

Returns 1 if the function succeeded, or 0 if there are more than 4
bytes per array cell. Warning: If the specified coordinates lie
outside the array, the plug-in may crash.

Description

Lets you store a value in an array. This is a fast version of
putArray without any error checking or memory checking. As it
does not do any border checking, it may produce error messages
or even crashes if not used properly.

When storing a value into an Array with byte-size 1, the value will
be clamped to the range [0,255]. For an Array of byte-size 2, the

value is clamped to [0,65535]. If the byte-size is not 1, 2, or 4, a
value of 0 is returned to indicate failure.

Example

See allocArray for an example of how to allocate arrays and use
the similar putArray function.

See Also

__putArray, __fputArray, allocArray, freeArray, putArray,
getArrayDim, copyArray

abort

Syntax

void abort(void)

Description

Causes the program to terminate processing immediately.

All open files are flushed and closed but reserved memory is not
automatically freed so this function must be used with caution
when allocating memory.

Comments

Depending on why you want to use the Abort function, you might
be better to use doAction(CA_CANCEL); instead.

Abort can cause Photoshop to crash in some test builds of
FilterMeister (eg FM 1.0g beta). Changing the abort_mode value
in 64-bit plug-ins may help avoid this crash.

When using Ctrl+F (Photoshop repeat last filter) condition is
ignored with doAction(CA_CANCEL); This doesn't happen with
abort(); At least for this purpose, abort(); seems to work more
reliably than doAction(CA_CANCEL);

See Also

doAction, abort_mode

abort_mode

Syntax

int abort_mode

Description

The abort mode variable determines how the filter will terminate
execution when the abort function is called.

Details

Set "abort_mode" to one of the following values during initial
execution of your filter:

0 - abort() throws an exception which is caught and handled at
the main execution level. This was the original FM 1.0
implementation, and requires Structured Exception Handling
(SEH) -- which is not yet available in FM64.

1 - abort() sets gResult = userCanceledErr, and returns 0; this is
the workaround suggested by Harry. This abort mode does not
stop the filter immediately, but lets the filter run to the end and
then discards the processing. The filter developer can use
"abort(); return true;" to make it stop immediately.

2 - abort() displays a message box "Processing aborted...", then
longjmp's back to the most recent setjmp.

3 - abort() silently longjmp's back to the most recent setjmp. This
is an attempt to simulate the original SEH implementation, but
won't work in all cases.

-1 - abort() uses the default implementation for the current
execution target (mode 0 for x32, mode 3 for x64; the latter will
revert to mode 0 once x64 supports SEH).

Comments

abort_mode is only available in FM1.0 Beta 9g MT4 and newer.

Example

%fml-2.0

OnFilterStart: {

 // This will cause abort to act as
 // a Cancel click in compiled
 // plug-ins and display an error
 // message during filter
 // development.

 abort_mode = 2;
 if (DESIGNTIME) abort_mode = 1;
 return true;
}

See Also

abort

abs

Syntax

int abs(int number)

Arguments

number
Any integer number.

Return

The absolute value of the supplied argument.

Description

Returns the absolute value of an integer number. When supplied
with a negative number, this function will return a positive
number of equal distance from zero.

Example

%ffp

OnFilterStart:
{
 Info("The absolute value of -10 is %d", abs(-10));
}

See Also

fabs

add

Syntax

int add(int a, int b, int c)

Arguments

a
Any integer.

b
Any integer.

c
Any integer.

Return

The lower integer value of c and (a+b).

Description

This function adds 'a' to 'b', then compares the result with 'c', and
returns the lower of the two values. Please note that this function
has been retained for compatibility with Filter Factory, and that
min(a+b,c) will give the same result and compute faster.

Example

// sets 'p' to 1, because 3+2=5,
// and 5>1 !
int p = add(3,2,1);

See Also

sub,min, max

allocArray

Syntax

int allocArray (int nr, int X, int Y, int Z, int bytes)

Arguments

nr
Number of the Array. Values from 0 to 99 are allowed.

X, Y, Z
Amount of X, Y and Z cells in the three-dimensional array. If
you want to allocate a one-dimensional array simply set Y
and Z to zero. If you want to allocate a two-dimensional
array, please set Z to zero.

bytes
Size in bytes of each cell of the array. Only values of 1, 2, 4
and 8 are allowed.

Return

Returns a value of 1 if the allocation succeeded and a value of zero
if it failed.

Description

This function lets you allocate up to 100 different arrays of a
user-definable size, with up to three dimensions and with up to 8
bytes per cell. 1 byte arrays have values from 0 to 255, 2 byte
arrays have values from 0 to 65535, 4 byte arrays can use integer
or float values and 8 byte arrays use double values.

Note that FilterMeister does not support standard C-language
arrays. For this purpose FilterMeister offers you alternative

functions like allocArray, putArray and getArray. Or you can
dynamically allocate memory with the malloc function.

These 100 arrays are internally managed by FilterMeister and
automatically freed when FilterMeister or a FM plug-in exits. So
you don't necessarily need to free them yourself with freeArray,
but it is recommended to do so if you don't need an array all the
time.

By default, arrays are allocated by calling the host application's
buffer allocation API, if it exists. This permits the host application
to coordinate its memory requirements with those of the plug-in
filter. If the host application does not support the buffer
allocation API, or if you call set_array_mode(0), then
FilterMeister will allocate arrays from the C runtime heap
instead.

Basically these array functions are a replacement for the less
flexible tile buffers. FilterMeister will support defining arrays as it
is usually done in C in future. In the meantime please use the
Array functions.

Example

%ffp

// This code works for 8-bit
// images and 16-bit images

ForEveryTile:
{

 int bitMultiply = (imageMode > 9 ? 128 : 1);

 // Allocate Array Nr. 5 and
 // make it the same size and

 // bitdepth as the image
 if (allocArray(5, X, Y, Z, imageMode > 9 ? 2 : 1)) {

 // Store the image data
 // in the array
 for (y=y_start; y<y_end; y++) {

 updateProgress(y,y_end);

 for (x = x_start; x < x_end; x++) {

 for (z = 0; z < Z; z++) {
 putArray(5, x, y, z, src(x,y,z));
 }

 }
 }

 // Read the image data from
 // the array and write it
 // back to the image as a
 // negative

 for (y = y_start; y < y_end; y++) {

 updateProgress(y, y_end);

 for (x = x_start; x < x_end; x++) {

 for (z = 0; z < Z; z++) {
 pset(x, y, z, 255 * bitMultiply - getArray(5, x,
y, z));
 }

 }
 }

 // Free the array
 freeArray(5);
 }
 else
 ErrorOk ("Array allocation failed");

 return true;
}

See Also

allocArrayPad, freeArray, getArray, fgetArray, putArray,
fputArray, getArrayDim, copyArray, fillArray, set_array_mode

allocArrayPad

Syntax

int allocArrayPad (int nr, int X, int Y, int Z, int bytes,
int padding)

Arguments

nr
Number of the Array. Values from 0 to 99 are allowed.

X, Y, Z
Amount of X, Y and Z cells in the three-dimensional array. If
you want to allocate a one-dimensional array simply set Y
and Z to zero. If you want to allocate a two-dimensional
array, please set Z to zero.

bytes
Size in bytes of each cell of the array. Only values of 1, 2, 4
and 8 are allowed.

padding
Size of the padding.

Return

Returns a value of 1 if the allocation succeeded and a value of zero
if it failed.

Description

allocArrayPad works just like allocArray with the difference that
there is an additional parameter for the padding size. For
example, if you use allocArrayPad(0,200,200,1,1,3), which sets the
padding size to 3, you can read and write values at the
coordinates (-3,-3) and (202,202).

See Also

allocArray, freeArray, getArray, putArray, getArrayDim,
copyArray, set_array_mode

allocHost

Syntax

int allocHost(int size)

Arguments

size
The size of the memory block to allocate in bytes.

Return

A bufferID for the allocated memory block, or NULL if the
memory couldn't be allocated (or the host program doesn't
support allocated memory blocks).

Description

Allocates a block of memory through the host application. Since
some graphics programs like Photoshop manage memory and
allocate large chunks of memory for themselves, you might want
to use this in preference to the system memory functions like
malloc and calloc.

Example

int bufferID = allocHost(100);
if (bufferID == NULL) {
 Warn("Could not allocate memory");
}
else {
 char* memptr = lockHost(bufferID);
 sprintf(memptr, "Message goes here!");

 Info(memptr);
 freeHost(bufferID);
}

See Also

lockHost, freeHost

appendEllipsis

Syntax

char* appendEllipsis(char* s)

Arguments

s
The text that will have an ellipsis appended.

Description

Returns string s with an ellipsis ("...") appended.

Example

%fml
ctl[4]: STATICTEXT, Text=""

OnFilterStart: {
 strcpy(str0, "Waiting");
 strcpy(str1, appendEllipsis(str0));
 setCtlText(4, str1);
 return true;
}

See Also

formatString, stripEllipsis

Aval

Syntax

int Aval(int rgba)

Arguments

rgba
A 32-bit quadruple holding values for the three color
channels, plus the alpha channel, each as eight bits.

Return

A value in the range 0 to 255 inclusive.

Description

The value returned is the value for the alpha channel, extracted
from the quadruple.

See Also

Rval,Gval,Bval

bCircle

Syntax

int bCircle(int x, int y, int centerx, int centery, int
radius)

Arguments

x, y
Current x and y coordinates in the image

centerx, centery
Center coordinates of the circle

radius
Radius of the circle

Return

If the supplied x and y values lie within the defined circle a value
of 1 will be returned, otherwise 0.

Description

Lets you easily draw a circle on the image.

Example

%ffp

ctl(0): "Center X", range=(0,255), val=128
ctl(1): "Center Y", range=(0,255), val=128
ctl(2): "Radius", range=(0,128), val=64

ForEveryTile:

{

 int Draw;

 for (y=y_start; y<y_end; y++) {
 updateProgress(y,y_end);
 for (x=x_start; x<x_end; x++) {
 Draw = bCircle(x,y,ctl(0),ctl(1),ctl(2));
 for (z=0; z<Z; z++) {
 if (Draw) pset(x,y,z,255);
 }
 }
 }

 return true;
}

See Also

bRect, bRect2, bTriangle

bgColor

Syntax

int bgColor

Description

The currently chosen background color value in the host
application (eg Photoshop®, Paint Shop Pro®).

Example

%fml
ctl[0]: OWNERDRAW, Size=(50,50), Pos=(240,3)
ctl[1]: OWNERDRAW, Size=(50,50), Pos=(300,3)
ctl[2]: STATICTEXT, Text="Foreground", Pos=(240, 55)
ctl[3]: STATICTEXT, Text="Background", Pos=(300, 55)

OnFilterStart: {
 setCtlColor(0, fgColor);
 setCtlColor(1, bgColor);
 return true;
}

See Also

fgColor, setCtlColor

BITMAP

Syntax

ctl[n]: BITMAP(Class Specific Properties), Other Properties

Description

The class BITMAP allows the filter developer to place a bitmap in
the dialog window. By default, this user control is not actionable.

Class Specific Properties

CENTERIMAGE
Scales the image to original size and centers the image
within the control.

NOTIFY
Makes the user control actionable and activates tooltip.

Other Properties

Action
The action that the plug-in should take when the bitmap is
clicked on.

Image
The path to the image that should be used for the bitmap

Val
Assigns a value to the bitmap, but only when it is disabled.
(default = 0)

Example

ctl[0]: BITMAP, Image="Logo.bmp"
ctl[1]: BITMAP(CENTERIMAGE, NOTIFY), Image =

"C:\\Images\\OK_Button.bmp", Action=APPLY

Notes

Once the bitmap is actionable, its value definitions are lost. The
reason is that an action returns a specific value and overwrites
(once the mouse button is clicked over the user control) the user
control's value.

Currently, only BMP files are supported. Transparency is
supported by using the class IMAGE.

When standalone filters are created, images are not embedded by
default. You can use the Embed: function to embed the image
into the standalone filter file.

The image file should be present in the active directory or in any
of the directories set in the PATH or FM_PATH variables (check
your AUTOEXEC.BAT file).

See Also

ICON, IMAGE, METAFILE

blend

Syntax

int blend (int a, int b, int z, int m, int r)

Arguments

a
Bottom Color Value from 0 to 255

b
Top Color Value from 0 to 255

z
Color Channel Value z. Only needed for the Dissolve,
Threshold and Threshold 2 blend modes.

m
Blend Mode (0 = Normal, 1 =Dissolve, 2 =Threshold, 3 =
Threshold 2, 4 = Multiply, 5 = Screen, 6 = Overlay, 7= Soft
Light, 8 =Hard Light, 9 = Dodge, 10 = Burn, 11 = Darken, 12 =
Lighten, 13 = Exclusion, 14 = Difference, 15 = NegDif 1, 16 =
NegDif 2, 17 = Subtract, 18 = Add, 19 = Expose)

r
blending ratio from 0 (bottom) to 255 (top)

Return

The blended color value is returned.

Description

Blends two color values according to 20 different blending
modes. There's also a parameter for the blending ratio. Currently
works only with 8-bit color values.

Example

%ffp
// This example blends the image
// with a mirrored version
// of itself.

ctl(0): "Ratio", range=(0,255), val=128
ctl(1): combobox(vscroll), action=preview,
 color=#FFFFFF, fontcolor=#0000ff,
 size=(50,200), text="Normal\n"
 "Dissolve\nThreshold\n"
 "Threshold 2\nMultiply\n"
 "Screen\nOverlay\n"
 "Soft Light\n"
 "Hard Light\n"
 "Dodge\nBurn\nDarken\n"
 "Lighten\nExclusion\n"
 "Difference\nNegDif 1\n"
 "NegDif 2\nSubtract\n"
 "Add\nExpose",
 val=0

ForEveryTile: {

 for (y=y_start; y < y_end; y++) {

 updateProgress(y,y_end);

 for (x = x_start; x < x_end; x++) {
 for (z = 0; z < Z; z++) {

 pset(x, y, z, blend(src(x,y,z), src(X-x,Y-y,z),
z, ctl(1), ctl(0)));

 }
 }
 }

 return true;

}

bRect

Syntax

int fm_bRect(int x, int y, int centerx, int centery, int
radiusx, int radiusy)

Arguments

x, y
Current x and y coordinates in the image

centerx, centery
Center coordinates of the circle

radiusx, radiusy
Horizontal and vertical radius of the rectangle

Return

If the supplied x and y values lie within the defined rectangle a
value of 1 will be returned, otherwise 0.

Description

Lets you easily draw a rectangle on the image.

Example

%ffp

ctl(0): "Center X", range=(0,255), val=128
ctl(1): "Center Y", range=(0,255), val=128
ctl(2): "Radius X", range=(0,128), val=64
ctl(3): "Radius Y", range=(0,128), val=64

ForEveryTile:
{

 int Draw;

 setCtlRange(0, 0, X);
 setCtlRange(1, 0, Y);
 setCtlRange(2, 0, X);
 setCtlRange(3, 0, Y);

 for (y=y_start; y<y_end; y++) {

 updateProgress(y, y_end);

 for (x=x_start; x<x_end; x++) {

 Draw = bRect(x, y, ctl(0), ctl(1), ctl(2), ctl(3));

 for (z=0; z<Z; z++) {
 if (Draw) pset(x,y,z,255);
 }
 }
 }

 return true;
}

See Also

bCircle, bRect2, bTriangle

bRect2

Syntax

int bRect2(int x, int y, int topx, int topy, int bottomx,
int bottomy)

Arguments

x, y
Current x and y coordinates in the image

topx, topy
Coordinates of the top left corner of the rectangle

bottomx, bottomy
Coordinates of the bottom right corner of the rectangle

Return

If the supplied x and y values lie within the defined rectangle a
value of 1 will be returned, otherwise 0.

Description

Lets you easily draw a rectangle on the image.

Example

%ffp

ctl(0): "Top X",val=64
ctl(1): "Top Y",val=64
ctl(2): "Bottom X",val=128
ctl(3): "Bottom Y",val=128

ForEveryTile:
{
 int Draw;

 for (y=y_start; y<y_end; y++) {

 updateProgress(y,y_end);

 for (x=x_start; x<x_end; x++) {

 Draw = bRect2(x, y, ctl(0), ctl(1), ctl(2), ctl(3));

 for (z=0; z<Z; z++) {
 if (Draw) pset(x,y,z,255);
 }
 }
 }

 return true;
}

See Also

bCircle, bRect, bTriangle

bTriangle

Syntax

int bTriangle(int x, int y, int centerx, int centery, int
radius)

Arguments

x, y
Current x and y coordinates in the image

centerx, centery
Center coordinates of the triangle

radius
Radius of the triangle

Return

If the supplied x and y values lie within the defined triangle a
value of 1 will be returned, otherwise 0.

Description

Lets you easily draw a triangle on the image.

Example

%ffp

ctl(0): "X",range=(0,255),val=150
ctl(1): "Y",range=(0,255),val=100
ctl(2): "Radius",range=(0,128),val=64

ForEveryTile:

{

 int Draw;

 for (y=y_start; y<y_end; y++) {

 updateProgress(y,y_end);

 for (x=x_start; x<x_end; x++) {

 Draw = bTriangle (x, y, ctl(0), ctl(1), ctl(2));

 for (z=0; z<Z; z++) {
 if (Draw) pset(x,y,z,255);
 }
 }
 }

 return true;
}

See Also

bRect, bRect, bRect2

Bval

Syntax

int Bval(int rgb)

Arguments

rgb
Either a 32-bit RGB triple or a 32-bit RGBA quadruple; in
either case, the red, green and blue channels are represented
as eight bit values, as is the alpha channel in the RGBA form.

Return

A value in the range 0 to 255 inclusive.

Description

The return value represents the value of the blue channel,
extracted from the triple (or quadruple).

Example

blue = Bval(fgColor);
// Gives the blue channel value from the current
foreground color

See Also

Aval, Gval, Rval

c2d

Syntax

int c2d(int x, int y)

Arguments

x
An integer pixel x-coordinate.

y
An integer pixel y-coordinate.

Return

An integer in the range -511 to 512.

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the origin [0,0], and
'm' is the 'magnitude' of the distance from the origin. The c2d()
function returns the polar coordinate direction 'd' for the pixel at
[x,y], relative to the top left corner of the image. A 'd' value of 0
represents the direction to the right along the x-axis (ie y=0); a
value of 256 represents the direction downward along the y-axis
(ie x=0); a value of 512 represents the direction to the left along
the x-axis (where y=0); and a value of -256 represents the upward
direction on the y-axis (where x=0). Naturally, intermediate
values represent the intermediate angles.

Example

%ffp

ForEveryTile:
{

for (y = y_start; y < y_end; ++y)
{
 for (x = x_start; x < x_end; ++x)
 {
 for (z = 0; z < Z; ++z)
 {
 pset(x, y, z, (256 * abs(c2d(x-X/2, y-Y/2))) /
512);
 }
 }
}

return true;

See Also

c2m, r2x, r2y

c2m

Syntax

int c2m(int x, int y)

Arguments

x
An integer pixel x-coordinate.

y
An integer pixel y-coordinate.

Return

An integer giving the distance from the center of the image to the
pixel at coordinates [x,y].

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the origin and 'm' is
the 'magnitude' of the distance from the origin. The c2m()
function returns the polar coordinate magnitude 'm' for the pixel
at [x,y], relative to the top left corner of the image.

Example

%ffp

ForEveryTile: {

 for (y=y_start; y < y_end; ++y) {
 for (x=x_start; x < x_end; ++x) {
 for (z=0; z < Z; ++z) {

 pset(x, y, z, (256 * (c2m(x-X/2, y-Y/2)))/128);

 }
 }
 }

 return true;
}

See Also

c2d, r2x, r2y

callLib

Syntax

??? callLib(void *fnptr, ...)

Arguments

fnptr
A pointer (obtained with getLibFn) to the DLL function to
call.

...
The other parameters required by the DLL function (varies
depending on the function).

Return

Returns the return value of the called DLL function, which varies
depending on the function called.

Description

Calls a function in a DLL that has previously been loaded with
loadLib and getLibFn.

Example

// This code loads the user32.dll
// DLL included with Windows and
// uses it to display a YES/NO
// Message Box.

int lib_user32, functionPointer, returnval;

// Load the DLL library
lib_user32 = loadLib("user32");
if (!lib_user32) msgBox(MB_OK, "Error", "DLL was not
loaded");

// Get the function in the DLL
functionPointer = getLibFn(lib_user32, "MessageBoxA");
if (!functionPointer) msgBox(MB_OK, "Error", "Function
wasn't loaded");

// Call the function
strcpy(str0, "The window text is here");
strcpy(str1, "Caption Text");
returnval = callLib(functionPointer, NULL, str0, str1,
MB_YESNO);

// Process return value
if (returnval == IDYES)
 msgBox(MB_OK, "Yes!", "Yes was clicked");
if (returnval == IDNO)
 msgBox(MB_OK, "No :(", "No was clicked");

// Free the library DLL
freeLib(lib_user32);

See Also

loadLib, getLibFn, freeLib

calloc

Syntax

void* calloc(int number, int size)

Arguments

number
The number of elements to be reserved.

size
The size of each of the elements to be reserved, measured in
bytes.

Return

A pointer to the allocated memory.

Description

Reserves memory for an array of number elements, each size
bytes in size. Each byte of memory allocated using this function
is initialized to 0. If you do not require this, malloc may be
preferred for speed.

If the memory could be allocated, a pointer to the first element in
the reserved memory block is returned.

If the memory could not be allocated (e.g., due to memory
shortage or a high degree of memory fragmentation), a NULL
value is returned instead.

Any memory reserved by use of this function must be manually
deallocated by means of the free function; failure to do so will

result in memory leakage and may ultimately crash the system.

Example

%ffp

OnFilterStart:
{
 // Allocate a string for 255 characters.
 char* buffer_1 = calloc(255, 1);

 free(buffer_1);
}

See Also

free, malloc, realloc

ceil

Syntax

double ceil(double number)

Arguments

number
Any double or float number.

Return

The rounded value.

Description

Returns the smallest integral value greater than or equal to
number.

Example

%ffp

OnFilterStart:
{
 Info("Rounding 2.345 to ceiling gives %f",
ceil(2.345));
 Info("Rounding -2.345 to ceiling gives %f",
ceil(-2.345));
}

See Also

chop, floor, iceil, round, C Runtime Functions

cell_initialize
Note: this function is deprecated.

Syntax

cell_initialize(int n)

Arguments

n
0 or 1

Description

cell_initialize is now deprecated. It is recommended that
cell_preserve be substituted whenever cell_initialize is
encountered in old code. See cell_preserve for details of usage.

See Also

cell_preserve, get, put

cell_preserve

Syntax

cell_preserve(int n)

Arguments

n
0 or 1

Description

FilterMeister has a small internal buffer of 1024 integer items
which can be accessed by means of the get and put functions.
They provide the simplest means for storing integer data since
they require no variable to be declared.

By default, the items in the buffer are initialized to zero at the
end of the executing code block. Calling the cell_preserve(1)
function changes this behavior so the buffer values are stored
between separate handlers, making them ideal for transporting
information between them.

Calling the cell_preserve(0) function restores the default
behavior, meaning that the buffer values will be reset to zero at
the end of the currently executing handler.

Comment

Note: cell_preserve was originally introduced as a FilterMeister
function with the name cell_initialize . The cell_initialize
form is now deprecated, and it is recommended that the
cell_preserve form be substituted whenever old code is

updated. cell_initialize took the same parameter values and
performed identically.

Example

%ffp

OnFilterStart:
{
 // remember values in buffer
 cell_preserve(1);

 put(10, 0);
 Info("The value of buffer position 0 is %d", get(0));
}

See Also

get, put

chdir

Syntax

int chdir(string path)

Arguments

path
The path of the directory/folder you want to change to.

Return

Returns 0 if the system successfully changed to the new folder,
non-zero otherwise.

Description

Changes the current working directory to the specified
directory/folder on the user's filesystem. Remember to use
double backslashes in the path.

Example

if (chdir("c:\\abc\\mynewfolder") != 0) {
 msgBox(MB_OK, "Successful", "Successfully changed the
current working directory.");
}
else msgBox(MB_OK | MB_ICONWARNING, "Error", "The system
was unable to change to the given folder.");

See Also

getSpecialFolder, rmdir, getcwd

CHECKBOX

Syntax

ctl[n]: CHECKBOX(Class Specific Properties), Other
Properties

Description

The checkbox acts as a toggle for two or three states. You should
use this control when the user has a choice of enabling or
disabling some function (eg disabling previewing, enabling a part
of your filter's algorithm). The three state option should be used
when the state can become "partially enabled". A common use for
checkboxes is to toggle between horizontal and vertical
orientation, for example in a blurring, or scanline filter.

Class Specific Properties

3STATE
Allows the checkbox to returns one of three values (third
state is a grayed check)

BORDER
Draws a border around the checkbox.

BOTTOM
Aligns text at the bottom of the checkbox's text area.

CENTER
Centers text within the checkbox's text area.

CLIENTEDGE
Draws a 3D-border around the checkbox.

FLAT
Gives the checkbox a flat, 2D appearance.

LEFT
Left-aligns text within the checkbox's text area. (default)

LEFTTEXT
Places the text label on the left of the checkbox (same as
RIGHTBUTTON).

MODALFRAME
Draws a 3D-socket around the checkbox.

MULTILINE
Allows word-wrapping within the checkbox's text area.

PUSHLIKE
Makes the checkbox appear as a depressable pushbutton.

RIGHT
Right-aligns text within the checkbox's text area.

RIGHTBUTTON
Places the text label on the left of the checkbox (same as
LEFTTEXT).

STATICEDGE
Draws a 3D-border around the checkbox.

TOP
Aligns text at the top of the checkbox's text area.

VCENTER
Vertically-centers text within the checkbox's text area.

Other Properties

Color
Sets text background color in plain English format (default =
transparent)

FontColor
Sets font color in hexadecimal format (default = #FFFFFF)

Text
Defines the text label next to the checkbox (default = no text)

Comment

If you are using the class-specific property 3STATE, these are the
values a function like ctl(n) returns (also applies if the class-
specific property PUSHLIKE is defined):

0
not checked

1
checked (black check in the checkbox)

2
checked (gray check in the checkbox)

There is a bug in Windows XP that causes checkboxes to show a
black background, even if a background image hasn't been
defined for the dialog. Currently, the only solution is to use the
Pushlike property, define another color using the Color property,
or simulate a checkbox using your own code and bitmaps.

Example

ctl[5]: CHECKBOX, "Horizontal/Vertical Lines",
FontColor=Darkblue
ctl[7]: CHECKBOX(3STATE), "White/Black/Gray"

checkCtlFocus

Syntax

int checkCtlFocus(int n)

Arguments

n
The number of the control to check for focus

Return

Returns true if the given control has focus, false otherwise.

Description

Checks if a given control currently has the user's focus (ie is
currently highlighted and responding to keyboard controls after
recently being clicked on).

Example

ctl[0]: STANDARD, "Control 0"
ctl[1]: STANDARD, "Control 1"
ctl[8]: STATICTEXT, "Which control has focus?"

OnCtl(n): {
 if (checkCtlFocus(0)) {
 setCtlText(8, "Control 0 has focus");
 }
 else if (checkCtlFocus(1)) {
 setCtlText(8, "Control 1 has focus");
 }

 else {
 setCtlText(8, "");
 }
 return true;
}

See Also

setCtlFocus

checkDialogFocus

Syntax

int checkDialogFocus()

Return

True if the dialog has keyboard focus, false otherwise.

Description

Checks if the dialog has keyboard focus.

Example

%fml
ctl[4]: STATICTEXT, Text=""

OnCtl(n): {

 // Move the mouse over the
 // preview to display if the
 // dialog is in focus or not.

 if (checkDialogFocus()) {
 setCtlText(4, "Has focus");
 }
 else setCtlText(4, "Out of focus.");

 return false;
}

chooseColor

Syntax

int chooseColor(int initialColor, string promptString, ...)

Arguments

initialColor
Specifies the initial or default color for the color picker, as an
RGB triple.

promptString
Specifies the prompt string for the color picker. This string
may contain printf-style format descriptors, which will be
expanded using the succeeding arguments.

...
Variable number of arguments of varying types, should
correspond to the format descriptors in promptString.

Return

The chosen color stored as an RGB triple, or -1 if the user cancels
the color picker.

Description

chooseColor invokes the host application's default color picker
dialog to allow the user to select an RGB color.

Example

int color = 0;

// Displays the color dialog with white as the default

color
color = chooseColor(RGB (255,255,255), "Please choose a
color:");

// Display the RGB values of the chosen color
Info("The following color was chosen: RGB (%d, %d, %d)",
Rval(color), Gval(color), Bval(color));

chop

Syntax

double chop(double number)

Arguments

number
Any double or float number.

Return

The truncated value.

Description

Returns the value of number truncated, towards 0.0, to an
integral value.

Example

%ffp

OnFilterStart:
{
 Info("Chopping 2.543 towards 0.0 gives %f",
chop(2.543));
 Info("Chopping -2.345 towards 0.0 gives %f",
chop(-2.345));
}

See Also

ceil, floor, ichop, round, C Runtime Functions

clearCtlBuddyStyle

Syntax

int clearCtlBuddyStyle(int n, int buddy, int flags)

Arguments

n
The number of the STANDARD or SLIDER control to modify

buddy
Set to 1 to modify the edit box, or to 0 to modify the text
label

flags
The style flags to clear from this control.

Style Flags

ES_CENTER Centers the text in the edit box when
editing

ES_LEFT Left-aligns the text in the edit box when
editing

ES_LOWERCASE Forces all letters to be lowercase in the
editbox

ES_NUMBER Only allow numbers to be typed into the
editbox

ES_RIGHT Right-aligns the text in the edit box when
editing

ES_UPPERCASE Forces all letters to be uppercase in the
editbox

SS_BLACKFRAME Adds a black rectangle around the text label
SS_BLACKRECT Replaces the label with a blackbox

SS_ETCHEDFRAME Adds an etched frame to the text label
SS_ETCHEDHORZ Adds an etched frame to the text label
SS_GRAYFRAME Adds a gray rectangle around the text label
SS_GRAYRECT Replaces the label with a gray box
SS_WHITEFRAME Adds a white rectangle around the text label
SS_WHITERECT Replaces the label with a white box

WS_BORDER Enables the single border outline of the
editbox

Return

Returns false if control number n is out of range or unused.
Otherwise, returns the result of the internal SetWindowPos
function (true if succeeded, false otherwise).

Description

Clears the given window style of the labels and edit boxes from a
STANDARD or SLIDER control.

Comment

This function must be followed by refreshCtl or refreshWindow,
or the changes may not take effect.

Due to a bug, refreshCtl and refreshWindow may affect the text
label rendering differently.

Example

%ffp

ctl(0): PUSHBUTTON, "Make Changes", Size=(60, *)
ctl(1): PUSHBUTTON, "Clear Changes", Size=(60, *), Pos=

(*,20)
ctl[4]: STANDARD, "Example"

OnCtl(n):{

 if (n==0 && e==FME_CLICKED) {

 // Make editbox Uppercase &
 // Right-aligned

 setCtlBuddyStyle(4, 1, WS_BORDER | ES_UPPERCASE |
ES_RIGHT);
 setCtlBuddyStyle(4, 2, SS_GRAYFRAME);
 refreshWindow();
 }

 if (n==1 && e==FME_CLICKED) {

 // Clear previous styles

 clearCtlBuddyStyle(4, 1, WS_BORDER | ES_UPPERCASE |
ES_RIGHT);
 clearCtlBuddyStyle(4, 2, SS_GRAYFRAME);
 refreshWindow();
 }

 return false;
}

See Also

refreshCtl, refreshWindow, setCtlBuddyStyle, STANDARD,
SLIDER

clearCtlProperties

Syntax

int clearCtlProperties(int n, int props)

Arguments

n
Number of the control to clear properties from

props
The properties to clear from the control.

Return

Returns an integer with the previous properties before they were
cleared by the function, or -1 if the control number is out of
range or if the control doesn't exist.

Description

This function clears a property (ie a style or special
characteristic) from a control that was previously set.

Example

// Set control #4 to trigger
// events whenever it changes
setCtlProperties(4, CTP_TRACK);

// Stop control #4 triggering
// events (ie clear the
// CTP_TRACK property)
clearCtlProperties(4, CTP_TRACK);

See Also

mkdir, chdir, rmdir

clearDialogEvent

Syntax

int clearDialogEvent(int state)

Arguments

state
An integer of bitwise flags of events to disable. Set to 1 to
disable Init events, 2 to disable Cancel events, 4 to disable
Keypress events.

Return

Always returns true

Description

Disables certain dialog events from being processed / triggered
in your own FilterMeister code. You might use this function to
stop keypresses from being processed by your code, or to let
FilterMeister process all cancel events internally.

Comment

Note that clearDialogEvent can only disable / deregister / clear
events. To enable an event & process it, you must use
setDialogEvent.

There appears to be a bug in Beta 9g and possibly newer
FilterMeister versions that prevents FME_CANCEL events from
being processed in code, even if you use this function to enabled
Cancel events.

Example

ctl[0]: CHECKBOX, "Enable Init Events"
ctl[1]: CHECKBOX, "Enable Cancel Events"
ctl[2]: CHECKBOX, "Enable Keypress Events"
ctl[4]: STATICTEXT, ""
ctl[5]: STATICTEXT, ""

OnCtl(n): {

 if (e == FME_INIT) {
 Info("The Init event was intercepted.");
 return true;
 }

 if (e == FME_CANCEL) {
 Info("Cancel event was intercepted!");
 return true;
 }

 if (e == FME_KEYDOWN) {
 printf("Key down!");
 return true;
 }

 if (n >= 0 && n <= 2 && e == FME_CLICKED) {

 int statevalue = ctl(0)*1 + ctl(1)*2 + ctl(2)*4;

 // Enable events we turned on
 setDialogEvent(statevalue);
 sprintf(str1, "setDialogEvent(%d) called",
statevalue);

 setCtlText(4, str1);

 // Clear events that we
 // turned off
 // (Use bitwise XOR)
 clearDialogEvent(statevalue ^ 7);
 sprintf(str2, "clearDialogEvent(%d) called",
statevalue ^ 7);
 setCtlText(5, str2);
 }

 return false;
}

See Also

setDialogEvent, FME_INIT, FME_CANCEL, FME_KEYDOWN,
FME_KEYUP

clearerr

Syntax

void clearerr(int filepointer)

Arguments

filepointer
file pointer as returned by fopen and such.

Description

Clears the end-of-file and error indicators for the given file. As
long as the error indicator is set, all file operations will return an
error until clearerr or rewind is called.

See Also

ferror

clock

Syntax

int clock()

Return

The number of clock ticks since the plug-in was started.

Description

Returns the number of clock ticks elapsed since the plug-in was
started. You can use this function to measure small differences in
time between two events, such as for performance testing in
your plug-in code.

See Also

time

cmyk2rgb

Syntax

int cmyk2rgb(int c, int m, int y, int k, int z)

Arguments

c
Cyan value

m
Magenta value

y
Yellow value

z
Determines which value is returned. z=0 for R (Red), z=1 for
G (Green), z=2 for B (Blue)

Return

Returns the R, G, B value from 0 to 255 depending on the value of
z

Description

Lets you convert CMYK color values to RGB color values.

Example

%ffp

ctl(0): "Adjust C", Range=(-255,255), val=0
ctl(1): "Adjust M", Range=(-255,255), val=0
ctl(2): "Adjust Y", Range=(-255,255), val=0

ctl(3): "Adjust K", Range=(-255,255), val=0

ForEveryTile:{

 int r,g,b,cyan,mag,yel,k;

 for (y= y_start; y < y_end; y++) {

 if (updateProgress(y, y_end)) abort();

 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 cyan = rgb2cmyk(r,g,b,0);
 mag = rgb2cmyk(r,g,b,1);
 yel = rgb2cmyk(r,g,b,2);
 k = rgb2cmyk(r,g,b,3);

 // Do the CMYK adjustment
 cyan = cyan + ctl(0);
 mag = mag + ctl(1);
 yel = yel + ctl(2);
 k = k + ctl(3);

 pset(x, y, 0, cmyk2rgb(cyan,mag,yel,k,0));
 pset(x, y, 1, cmyk2rgb(cyan,mag,yel,k,1));
 pset(x, y, 2, cmyk2rgb(cyan,mag,yel,k,2));
 }
 }

 return true;
}

See Also

rgb2cmyk

cnv

Syntax

int cnv(int m11, int m12, int m13, int m21, int m22, int
m23, int m31, int m32, int m33, int d)

Arguments

m11
An integer weighting for the pixel at [x-1,y-1]

m12
An integer weighting for the pixel at [x,y-1]

m13
An integer weighting for the pixel at [x+1,y-1]

m21
An integer weighting for the pixel at [x-1,y]

m22
An integer weighting for the pixel at [x,y]

m23
An integer weighting for the pixel at [x+1,y]

m31
An integer weighting for the pixel at [x-1,y+1]

m32
An integer weighting for the pixel at [x,y+1]

m33
An integer weighting for the pixel at [x+1,y+1]

d
An integer divisor - usually the sum of the nine weighting
values

Return

An integer in the range 0 to 255

Description

This function is valid only in the RGBA and ForEveryPixel
handlers; the xyzcnv function performs the same operation in
the ForEveryTile handler. The cnv function performs a basic
convolution operation using a 3 by 3 matrix of image pixels and a
corresponding matrix of weightings. The parameters to the
function call represent the values of the weighting matrix,
presented in row order - in other words, in the designation used
here the first digit after the 'm' represents the row number and
the second the column. The divisor 'd' should usually be given as
the sum of the nine weightings. The cnv function sums the values
for the nine pixels centered on the current [x,y] position and
channel, multiplying each pixel value by the corresponding
weighting from the matrix; the value returned is then that sum
divided by the divisor 'd'.

Example

%ffp

// Simple 3x3 Gaussian blur
R,G,B,A : cnv(1,2,1, 2,4,2, 1,2,1, 16)

See Also

xyzcnv

cnvX

Syntax

int cnvX(int k, int off, int d, function* pGetf, int x, int
y, int z)

Arguments

k
The kernel radius. Must be a positive number.

off
The starting index within the anonymous array of put/get
cells where the kernel coefficients are stored. The number of
coefficients is n=k*2+1, where 'k' is the kernel radius.

d
The denominator by which the convolution sum will be
divided.

pGetf
The FM built-in function that will be called to fetch values
from an image buffer at the designated coordinates. Must be
'src', 'tget', 't2get', or 'pget'.

x
The x-coordinate at which the (center of the) kernel is to be
applied.

y
The y-coordinate at which the (center of the) kernel is to be
applied.

z
The channel number to which the kernel is applied.

Return

The integer result obtained by summing the products of the n
kernel coefficients with n image pixels in the X direction, and
dividing the sum by 'd'.

Description

Applies a 1-D convolution to the image in the horizontal / x
direction. That is, cnvX convolves pixels at co-these ordinates:

(x-k,y), (x-k+1,y), ... (x-1,y), (x,y), (x+1,y), ... (x+k-1,y), (x+k,y)

Example

// 3-pixel radius blur in the x-direction

ForEveryTile: {

 // Convolution coefficients
 // in first 7 cells
 put(1, 0);
 put(2, 1);
 put(3, 2);
 put(4, 3);
 put(3, 4);
 put(2, 5);
 put(1, 6);

 int val;

 for (z = 0; z < 3; z++) {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {

 val = cnvX(3, 0, 16, src, x, y, z);
 pset(x, y, z, val);

 }
 }
 }

 return true;
}

See Also

cnv, cnvY, xyzcnv

cnvY

Syntax

int cnvY(int k, int off, int d, function* pGetf, int x, int
y, int z)

Arguments

k
The kernel radius. Must be a positive number.

off
The starting index within the anonymous array of put/get
cells where the kernel coefficients are stored. The number of
coefficients is n=k*2+1, where 'k' is the kernel radius.

d
The denominator by which the convolution sum will be
divided.

pGetf
The FM built-in function that will be called to fetch values
from an image buffer at the designated coordinates. Must be
'src', 'tget', 't2get', or 'pget'.

x
The x-coordinate at which the (center of the) kernel is to be
applied.

y
The y-coordinate at which the (center of the) kernel is to be
applied.

z
The channel number to which the kernel is applied.

Return

The integer result obtained by summing the products of the n
kernel coefficients with n image pixels in the Y direction, and
dividing the sum by 'd'.

Description

Applies a 1-D convolution to the image in the vertical / y
direction. That is, cnvY convolves pixels at co-these ordinates:

(x,y-k), (x,y-k+1), ... (x,y-1), (x,y), (x,y+1), ... (x,y+k-1), (x,y+k)

Example

// 3-pixel radius blur in the y-direction

ForEveryTile: {

 // Convolution coefficients
 // in first 7 cells
 put(1, 0);
 put(2, 1);
 put(3, 2);
 put(4, 3);
 put(3, 4);
 put(2, 5);
 put(1, 6);

 int val;

 for (z = 0; z < 3; z++) {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {

 val = cnvY(3, 0, 16, src, x, y, z);
 pset(x, y, z, val);

 }
 }
 }

 return true;
}

See Also

cnv, cnvX, xyzcnv

COMBOBOX

Syntax

ctl[n]: COMBOBOX(Class Specific Properties), Other
Properties

Description

Comboboxes are good for drop-down lists, also known as "pull-
down menus". The items in the listbox are specified in the Text
string, separated with the new-line escape sequence (\n). Each
item has a unique integer value, starting at 0 and increasing.

Class Specific Properties

DISABLENOSCROLL
Used in conjunction with HSCROLL or VSCROLL; if the item
amount is less than needed to require scrolling, the scrollbar
is disabled (instead of it being removed).

EXTENDEDUI
List drops down when right and down arrow keys are
pressed. By default, arrow keys select the next item without
dropping down the list.

INTEGRALHEIGHT
The height of the listbox is resized according to the items'
height. (default)

LOWERCASE
Items in the combobox are displayed in lowercase
characters.

NOINTEGRALHEIGHT
The height of the listbox is resized according to the Size
property, even if items are partially displayed.

SORT

Sorts the items in alphabetical order. The values of the items
are recomputed - the top item is always 0 and continues
with 1, 2, etc.

UPPERCASE
Items in the combobox are displayed in uppercase
characters.

VSCROLL
If necessary, a vertical scrollbar is activated.

Other Properties

Text
Defines the combobox's text contents. (default = no text)

Val
Assigns a value to the combobox and activates the item.
(default = -1)

Example

ctl[0]: COMBOBOX(VSCROLL, DISABLENOSCROLL),
 Text="U.S.A.\nGermany\nRussia\n"
 "Brazil\nSpain\nEgypt", Val=1,
 Size=(*,60)

COMBOBOX usage example

%ffp

ctl[0]: COMBOBOX(VSCROLL),
 "Algorithm 1\nAlgorithm 2\n"
 "Algorithm 3\Algorithm 4", Val=0,
 Size=(130,60), Action=PREVIEW

ForEveryTile:
{

 // Loop through all rows
 for (y = y_start; y < y_end; y++)
 {
 // Loop through all columns
 for (x = x_start; x < x_end; x++)
 {
 switch (ctl(0))
 {
 case 0: //Algorithm 1
 ... Your code
 break;

 case 1: //Algorithm 2
 ... Your code
 break;

 case 2: //Algorithm 3
 ... Your code
 break;

 case 3: //Algorithm 4
 ... Your code
 break;
 }
 }
 }

 // Tile has been completely processed
 return true;
}

Comment

When using the INTEGRALHEIGHT and Size=(x,y) properties, the
y value refers to the height of the list displayed after the
combobox is clicked. The height is automatically rounded-off to
display a whole number of textlines. You cannot extend the
height of the combobox beyond the length of the combobox list
(FilterMeister will round down values that are too high). This
behaviour can be overridden using the NOINTEGRALHEIGHT
property.

See Also

LISTBOX

contrast

Syntax

int contrast(int pixel, int contrast)

Arguments

pixel
The pixel color value the contrast algorithm will be applied
to.

contrast
The amount of contrast to apply on a range of -127 to 128,
with 0 meaning no contrast adjustment.

Return

The new pixel color value after contrast is applied.

Description

Applies a simple contrast effect to a given pixel value.

Example

ctl[0]: "Contrast", Range=(-127,128), Val=0

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 pset(x,y,z, contrast(src(x,y,z), ctl(0)));
 }
 }

 }
 return true;
}

See Also

blend, gamma, gray, saturation

copyArray

Syntax

int copyArray (int src, int dest)

Arguments

src
Number of the source array whose data will be copied.
Values from 0 to 99 are allowed.

dest
Number of the destination array to which the data from the
source array will be copied. Values from 0 to 99 are allowed.

Return

Returns zero if it failed and 1 if it succeeded.

Description

Lets you very quickly create a duplicate of the source array. If the
source array doesn't exist, this function will fail. If the destination
array doesn't exist, it will be automatically created. The
destination array will automatically be adjusted to the size of the
source array. Data that was stored in the destination array will be
overwritten.

See Also

allocArray, freeArray, getArray, putArray, getArrayDim

cosineInterpolate

Syntax

int cosineInterpolate(int v1, int v2, double x)

Arguments

v1
The first value to interpolate between

v2
The second value to interpolate between

x
The point between the two values to interpolate at, a floating
value between 0.0 and 1.0.

Return

The integer result of interpolating between the two values.

Description

Interpolates between two values according to a cosine function.
If you have values at two known points, you can estimate
(interpolate) the value somewhere between those two points
using this function. This is useful if you need to estimate a pixel
value "between" the actual pixels, for example when zooming into
an image. Cosine interpolation can create a slightly
crisper/sharper result than linear interpolation.

Example

This example performs a kind of cosine interpolated zoom
operation.

%fml
ctl[0]: STANDARD, Text="Zoom", Val=100
ctl[1]: CHECKBOX, Text="Use Cosine Interpolation", Val=1

ForEveryTile: {
 for (y=0; y < Y; y++) {
 for (x=0; x < X; x++) {
 for (z=0; z < Z; z++) {

 double srcx = 100.0 * x / ctl(0);
 double srcy = 100.0 * y / ctl(0);

 int topleft = src((int)floor(srcx),
(int)floor(srcy), z);
 int topright = src((int)ceil(srcx),
(int)floor(srcy), z);
 int lwrleft = src((int)floor(srcx),
(int)ceil(srcy), z);
 int lwrright = src((int)ceil(srcx),
(int)ceil(srcy), z);

 int interpolatedtop, interpolatedlwr,
interpolated;

 if (ctl(1)) {
 interpolatedtop = cosineInterpolate(topleft,
topright, srcx - floor(srcx));
 interpolatedlwr = cosineInterpolate(lwrleft,
lwrright, srcx - floor(srcx));
 interpolated =
cosineInterpolate(interpolatedtop, interpolatedlwr, srcy -
floor(srcy));
 }
 else {
 interpolatedtop = linearInterpolate(topleft,

topright, srcx - floor(srcx));
 interpolatedlwr = linearInterpolate(lwrleft,
lwrright, srcx - floor(srcx));
 interpolated =
linearInterpolate(interpolatedtop, interpolatedlwr, srcy -
floor(srcy));
 }

 pset(x, y, z, interpolated);

 }
 }
 }
 return true;
}

Comment

To perform interpolation across an image, it is easier to use the
iget function, which does the hard work for you.

See Also

iget, linearInterpolate

countProcessors

Syntax

int countProcessors(void)

Return

Returns the number of physical and/or logical processors on
your system, as reported by the Windows GetSystemInfo API.

Description

Lets you know the number of processors you have at your
disposal to perform useful work. The process count includes each
separate physical cpu, or each core within a multicore cpu, or the
two logical cpus within a Hyper-Threaded cpu.

Comments

It would be nice to have an API that gives additional info about
the processors, such as which ones are physical, which are
logical, which logical processors reside on the same H-T or
multicore processor, etc.

Example

%ffp

OnFilterStart:
{
 int ncpu = countProcessors();

 Info ("This system has %d available processor%s.",

ncpu, ncpu==1?"":"s");

 return false; //continue processing
}

See Also

System Functions, Multithreading Functions, triggerThread,
waitForThread, isThreadActive, getThreadRetVal,
terminateThread

createCircularRgn

Syntax

region createCircularRgn(int x, int y, int d)

Arguments

x
x defines abscissa (in DBUs) of upper-left corner of the
bounding box (not the circle's center!).

y
y defines ordinate (in DBUs) of upper-left corner of the
bounding box (not the circle's center!).

d
d defines the circle's diameter

Return

Return a circular region (see comments)

Description

Allows to define a rounded circular visual region, that can be for
instance handled by the functions refreshRgn or
setDialogRegion.

Example

setDialogRegion(createCircularRgn(20, 20, 200));

Comments

"region" corresponds to a particular FM type or object that might
need to be better documented or defined. You can't directly cast
it to an integer, despite it behaving like an integer.

createCircularRgn is a wrapper around the Windows Win32 built-
in function CreateEllipticRgn, documented here: Microsoft
MSDN CreateEllipticRgn function

See Also

createEllipticRgn, createRectRgn, createRoundRectRgn,
createCircularRgn, createPolyRgn, refreshRgn, setDialogRegion

https://msdn.microsoft.com/en-us/library/windows/desktop/dd183496(v=vs.85).aspx

createCriticalSection

Syntax

int createCriticalSection(void)

Return

Returns a handle to a newly created Critical Section, or 0 if the
Critical Section could not be created.

Description

This function creates a new Critical Section, which may be used
to enforce mutually exclusive access to a resource or set of
resources. At most one thread can "enter" a Critical Section at
any given time. Any other threads wishing to enter the same
Critical Section must wait until the first thread "leaves" the
Critical Section. If you have more that one set of resources that
need protection, you can create a separate Critical Section to
guard each resource, thus allowing a higher degree of parallel
processing, since a thread using one such resource does not lock
out other threads from using other guarded resources at the
same time.

For more information about Critical Sections, see the MSDN
documentation about [Critical Section Objects].

Example

%fml

// Sample filter creates 5 worker
// threads. Each thread is

http://msdn.microsoft.com/en-us/library/ms682530(VS.85).aspx

// assigned the "next available"
// line "y" to process, until all
// lines have been processed.
// Since multiple threads are
// attempting to read and
// increment the "nextY" variable
// at the same time, we use a
// Critical Section to serialize
// access to "nextY".
//
// N.B. This example assumes
// global variables are
// implemented in such a manner
// that they are shared among all
// threads (which is not yet true
// as of FM 1.0 Beta 9e).

// Global int to hold next line
// to be processed
int nextY;

// Critical Section handle for
// guarding access to "nextY"
int csNEXTY;

OnCtl(n):{

 if (e==FME_CUSTOMEVENT && n==666) {

 // Perform function #666
 while(1) {

 // Need to serialize access
 // to "nextY"; else two
 // threads may try to
 // increment nextY at the

 // same time, with
 // indeterminate results.

 enterCriticalSection(csNEXTY);
 // "nextY" is a
 // shared global var
 int y = nextY++;
 leaveCriticalSection(csNEXTY);

 // exit thread if no more
 // lines to process
 if (y >= y_end) return true;

 // process this line y...
 for (int x = x_start; x < x_end; x++) {
 for (int z = 0; z < Z; z++) {

 // invert this pixel...
 pset(x,y,z, 255-src(x,y,z));
 // do other work here

 } //for z
 } //for x
 } //while(1)
 } //if FME_CUSTOMEVENT 666

 // other events not yet processed
 return false;
}

ForEveryTile: {

 // Create a Critical Section to
 // guard access to nextY

 csNEXTY = createCriticalSection();
 if (!csNEXTY) {
 ErrorOk("Failed to create Critical Section csNEXTY");
 return false;
 }

 // Set initial value of
 // "nextY" to y_start
 nextY = y_start;

 // Start 5 worker threads...
 for (int i=0; i < 5; i++)
 triggerThread(666,FME_CUSTOMEVENT,i);

 // Wait for threads to finish
 waitForThread(0, INFINITE, 0);

 // Delete the Critical Section
 deleteCriticalSection(csNEXTY);

 // finished processing tile
 return true;
}

See Also

System Functions, enterCriticalSection,
tryEnterCriticalSection, leaveCriticalSection,
deleteCriticalSection

createCtl

Syntax

createCtl(int n, int c, string t, int x, int y, int w, int
h, int s, int sx, int p, int e)

Arguments

n
Index number to give this control.

c
Class of control to create.

t
Text label for the control.

x
X-axis position, the left-most position of the control (in
DBUs)

y
Y-axis position, the upper-most position of the control (in
DBUs)

w
Width of the control (in DBUs)

h
Height of the control (in DBUs)

s
Style parameters for the control.

sx
Extended style parameters for this control.

p
Properties to give this control.

e
Enable level of the control.

Description

This function creates a new user control. Unlike the control
definitions at the start of your source code, createCtl can create
controls at runtime from within your filter code. In conjunction
with the deleteCtl function, for example, you can dynamically
create and destroy user controls.

The class c should be one of the following predefined values:
CC_STANDARD, CC_SCROLLBAR, CC_TRACKBAR,
CC_CHECKBOX, CC_PUSHBUTTON, CC_GROUPBOX,
CC_RADIOBUTTON, CC_LISTBOX, CC_COMBOBOX,
CC_OWNERDRAW, CC_STATICTEXT, CC_FRAME, CC_RECT,
CC_BITMAP, CC_IMAGE, CC_ICON.

For x, y, w, and h, a value of -1 means use the default value.

The style of the user control differs from control to control, but
you can try using:

CC_CHECKBOX
use s=BS_CHECKBOX (2),
BS_AUTOCHECKBOX (3), BS_3STATE (5),
or BS_AUTO3STATE (6)

CC_GROUPBOX use s=BS_GROUPBOX (7)

CC_RADIOBUTTON use s=BS_RADIOBUTTON (4) or
BS_AUTORADIOBUTTON (9)

CC_COMBOBOX use s=CBS_SIMPLE (1), CBS_DROPDOWN
(2), or CBS_DROPDOWNLIST (3)

CC_OWNERDRAW use s=BS_OWNERDRAW (11)

CC_FRAME
use s=SS_BLACKFRAME (7),
SS_GRAYFRAME (8), SS_WHITEFRAME (9),
or SS_ETCHEDFRAME (18)

CC_RECT use s=SS_BLACKRECT (4), SS_GRAYRECT
(5), or SS_WHITERECT (6) for black, gray,

or white fill

CC_STATICTEXT

use s=SS_LEFT (0) for left-aligned text,
SS_CENTER (1) for center-aligned text,
SS_RIGHT (2) for right-aligned text, or
SS_LEFTNOWORDWRAP (12) for left-
aligned text with no word wrap. This
corresponds to the LEFT, CENTER, RIGHT,
and LEFTNOWORDWRAP styles in control
definitions.

rest of the user
controls use s=0

The extended style of the control may differ depending on class
type, but generally you can set the value to 0 (for default
settings), WS_EX_DLGMODALFRAME (1) for a MODALFRAME-
like look, WS_EX_CLIENTEDGE (0x200) for a sunken 3D-look,
and WS_EX_STATICEDGE (0x20000) for a 3D border. (NB: check
this??)

The enable level can be any of 0 (for invisible and disabled), 1 (for
visible but disabled), or 3 (for visible and enabled).

Example

createCtl(0, CC_PUSHBUTTON, "Oh boy", 200, 20, 40, 30, 0,
1, 0, 3);
createCtl(4, CC_CHECKBOX, "Disrupt color", -1, -1, -1, -1,
3, 0, 0, 3);

See Also

clearCtlProperties, deleteCtl, setCtlProperties

createEllipticRgn

Syntax

region createEllipticRgn(int x1, int y1, int x2, int y2)

Arguments

x1
The x coordinate (in DBUs) of the upper-left corner of the
bounding box of the ellipse.

y1
The y coordinate (in DBUs) of the upper-left corner of the
bounding box of the ellipse.

x2
The x coordinate (in DBUs) of the lower-right corner of the
bounding box of the ellipse.

y2
The y coordinate (in DBUs) of the lower-right corner of the
bounding box of the ellipse.

Return

Return an elliptic region (see comments)

Description

Allows to define an elliptic visual region, that can be for instance
handled by the functions refreshRgn or setDialogRegion

Comments

"region" correspond to a particular FM type or object that might
need to be better documented or defined. You can't directly cast

it to an integer, despite it behaves like an integer.

Example

setDialogRegion(createEllipticRgn(20, 20, 300, 200));

See Also

createCircularRgn, createRectRgn, createRoundRectRgn,
createCircularRgn, createPolyRgn, refreshRgn, setDialogRegion

createPolyRgn

Syntax

region createEllipticRgn(int fill_mode,int x1, int y1, int
x2, int y2, ..., int xn, int yn)

Arguments

fill_mode
Use either the predefined constant ALTERNATE or WINDING
to set this parameter. Then FM will either fill or not
overlapping areas.

x1,y1, x2,y2, ..., xn,yn
At least three coordinate pairs must be defined.

Return

Return a polygonal region (see comments).

Comments

"region" correspond to a particular FM type or object that might
need to be better documented or defined. You can't directly cast
it to an integer, despite it behaves like an integer.

Example

setDialogRegion(createPolyRgn(WINDING, 6, 50, 45, 6,
100, 30, 95, 87, 36, 102));

See Also

createCircularRgn, createEllipticRgn, createRectRgn,
createRoundRectRgn, createCircularRgn, refreshRgn,
setDialogRegion

createPopupMenu

Syntax

int createPopupMenu();

Return

A pointer to the created menu object.

Description

Start a new popup menu.

Comment

You'll need to use insertMenuItem to add menu items and
trackPopupMenu to display it. After using the menu, you must
destroy it using destroyMenu.

Example

%ffp

ctl[0]: PUSHBUTTON, "Click Me!"

OnCtl(n): {

 if (n==0 && e == FME_CLICKED){
 int menu=0;

 menu = createPopupMenu();

 insertMenuItem(menu, 1, "Do This",MFS_ENABLED , NULL);

 insertMenuItem(menu, 2, "Do That",MFS_ENABLED |
MFS_DEFAULT, NULL);
 insertMenuItem(menu, 3, "Do Nothing",MFS_ENABLED,
NULL);
 Info("Selection: %d", trackPopupMenu (menu, 1, 0,0,0)
);

 destroyMenu(menu);
 }

 return false;
}

See Also

insertMenuItem, trackPopupMenu, destroyMenu

createRectRgn

Syntax

region createRectRgn(int x1, int y1, int x2, int y2)

Arguments

x1
The x coordinate (in DBUs) of the upper-left edge of the
rectangle.

y1
The y coordinate (in DBUs) of the upper-left edge of the
rectangle.

x2
The x coordinate (in DBUs) of the lower-right edge of the
rectangle.

y2
The y coordinate (in DBUs) of the lower-right edge of the
rectangle.

Return

Return a rectangular region (see comments)

Description

Allows to define a rectangular visual region, that can be for
instance handled by the functions refreshRgn or
setDialogRegion

Comments

"region" correspond to a particular FM type or object that might
need to be better documented or defined. You can't directly cast
it to an integer, despite it behaves like an integer.

Example

refreshRgn(createRectRgn(215,30,410,250));

See Also

createRoundRectRgn, createCircularRgn, createEllipticRgn,
createPolyRgn, refreshRgn, setDialogRegion

createRoundRectRgn

Syntax

region createRoundRectRgn(int x1, int y1, int x2, int y2,
int w, int h)

Arguments

x1
The x coordinate (in DBUs) of the upper-left edge of the
rectangle.

y1
The y coordinate (in DBUs) of the upper-left edge of the
rectangle.

x2
The x coordinate (in DBUs) of the lower-right edge of the
rectangle.

y2
The y coordinate (in DBUs) of the lower-right edge of the
rectangle.

w
Width of the ellipse for the rounded corners

h
Height of the ellipse for the rounded corners

Return

Return a rounded rectangular region (see comments)

Description

Allows to define a rounded rectangular visual region, that can be
for instance handled by the functions refreshRgn or

setDialogRegion

Comments

"region" correspond to a particular FM type or object that might
need to be better documented or defined. You can't directly cast
it to an integer, despite it behaves like an integer.

Example

refreshRgn(createRoundRectRgn(215,30,410,250, 10,20));

See Also

createRectRgn, createCircularRgn, createEllipticRgn,
createPolyRgn, refreshRgn, setDialogRegion

ctl

Syntax

int ctl(int id)

Arguments

id
A numeric identifier for a control.

Return

The current value of the control specified. Max range: from
-9999999 (7 digits) to +99999999 (8 digits).

Description

Returns the current value of the user control specified by the id
argument. There are max. 250 ctl's possible: ctl(0) through
ctl(249).

Example

%ffp

ctl(0): STANDARD

OnFilterStart:
{
 Info("The value of control 0 is %d", ctl(0));
 return false;
}

ctlEnabled

Syntax

int ctlEnabled(int n)

Arguments

n
Control number whose state will be queried.

Return

Returns 0 if the control is invisible, 1 if the control is disabled or 3
if the control is visible and enabled.

Description

This function lets you check the state of a control. Without this
function you would have to store the control states in an array or
in the put/get cells which would be less convenient. While you
can check the state of a control with this function, you can set it
with the enableCtl function.

See Also

enableCtl

ctlEnabledAs

Syntax

int ctlEnabledAs(int n)

Arguments

n
Control number whose state will be queried.

Return

Returns 0 if the control is invisible, 1 if the control is disabled or 3
if the control is visible and enabled.

Description

This function is closely related to ctlEnabled. Whereas ctlEnabled
returns the state of the control itself, ctlEnabledAs returns the
enabled state depending on the state(s) of any parent controls the
specified control might have.

If a control is visible (state 3) by itself, but is part of a tab control
(the parent) which is invisible (state 0), this control will not be
drawn. ctlEnabled would return state 3 (visible), ctlEnabledAs
would return 0 (invisible).

This function will return the "lowest" state of all states of the
control itself and all it's parent controls, in order from low to
high: 0 (invisible), 1 (disabled), 3 (visible and enabled).

See Also

ctlEnabled

deleteCriticalSection

Syntax

bool deleteCriticalSection(int hCS)

Arguments

hCS
Specifies the handle of the Critical Section to be deleted, as
obtained from a call to createCriticalSection.

Return

This function returns true immediately after deleting the
specified Critical Section. It returns false if hCS is zero.

Description

This function deletes a specified Critical Section and releases all
system resources that were allocated to it. Any thread can delete
the Critical Section, but it must be currently unowned by any
thread. After a Critical Section is deleted, it can no longer be used
as a synchronization object until it is recreated by a call to
createCriticalSection.

For more information about Critical Sections, see the MSDN
documentation about [Critical Section Objects].

Comments

One need not normally test the return value of
deleteCriticalSection. This is merely a check to make sure that

http://msdn.microsoft.com/en-us/library/ms682530(VS.85).aspx

hCS is non-zero so the DeleteCriticalSection Win32 API won't
cause a memory access violation.

Example

See the createCriticalSection example.

See Also

System Functions, createCriticalSection, enterCriticalSection,
tryEnterCriticalSection, leaveCriticalSection

deleteCtl

Syntax

void deleteCtl(int n);

Arguments

n
The index number of the control you want to delete.

Description

This function simply deletes the user control with the index n.

Example

deleteCtl(5);
deleteCtl(CTL_CANCEL);

See Also

createCtl

deleteCtlItem

Syntax

int deleteCtlItem(int n, int itemnum)

Arguments

n
The number of the listbox/combobox control to delete an
item from

itemnum
The number of the item to delete from the
listbox/combobox/tab control

Return

Returns false if the control number is out of range, not in use, or
not a LISTBOX, COMBOBOX or TAB control. Otherwise, returns
true if the function succeeded, false otherwise.

Description

Deletes an item in a LISTBOX, COMBOBOX or a TAB control.

Example

%fml
ctl[0]: LISTBOX(VSCROLL),
Text="Harry\nLarry\nSally\nCarrie"
ctl[3]: PUSHBUTTON, Text="Delete 1st Person", Size=(100,*)
ctl[5]: PUSHBUTTON, Text="Delete 2nd Person", Size=(100,*)
ctl[7]: PUSHBUTTON, Text="Reset Everyone", Size=(100,*)
ctl[11]: STATICTEXT, Text="People Left: ", Pos=(*, 100)

OnCtl(n): {

 if (n==3 && e == FME_CLICKED) {
 deleteCtlItem(0, 0);
 }

 if (n==5 && e == FME_CLICKED) {
 deleteCtlItem(0, 1);
 }

 if (n==7 && e == FME_CLICKED) {
 setCtlText(0, "Harry\nLarry\nSally\nCarrie");
 }

 return false;
}

OnFilterStart: {
 setCtlTextv(11, "People Left: %d", getCtlItemCount(0));
 return false;
}

See Also

getCtlItemCount, deleteCtlItems, setCtlText, setCtlTextv,
COMBOBOX, LISTBOX, TAB

deleteCtlItems
Warning: This function causes memory access violations, do not
use.

Syntax

int deleteCtlItems(int n)

Arguments

n
The number of the listbox/combobox/tab control to delete
all items from

Return

Returns false if the control number is out of range, not in use, or
not a LISTBOX, COMBOBOX or TAB control.

Description

Deletes all items in a LISTBOX, COMBOBOX or TAB control.

Comment

Please do not use this function. Note that there is currently a
bug in this function that causes memory access violations,
resulting in a crash in the host application when used with
listboxes & comboboxes. As a workaround, use setCtlText(n,"")
instead to reset the text contents to zero, which is the same as
what FilterMeister does internally (or at least, is meant to).

Example

%fml
ctl[0]: LISTBOX(VSCROLL),
 Text="Harry\nLarry\n"
 "Sally\nCarrie"
ctl[4]: PUSHBUTTON, Text="Delete Everyone", Size=(100,*)
ctl[7]: PUSHBUTTON, Text="Add Everyone", Size=(100,*)

OnCtl(n): {

 if (n==4 && e == FME_CLICKED) {
 // Due to a bug, this next
 // line causes a memory
 // access violation
 //deleteCtlItems(0);

 // As a workaround, do this
 setCtlText(0, "");
 }

 if (n==7 && e == FME_CLICKED) {
 setCtlText(0, "Harry\n"
 "Larry\nSally\nCarrie");
 }

 return false;
}

See Also

deleteCtlItem, setCtlText, COMBOBOX, LISTBOX, TAB

deleteFont

Syntax

int deleteFont(int n)

Arguments

n
The number of the font to delete (from memory), in the
range 0 - 31.

Return

Returns true if the font was successfully removed from FM
memory, false otherwise.

Description

Deletes a font object reference from memory in FilterMeister.
The font must first have been created/assigned using the
createFont function.

Comment

Behind the scenes, FilterMeister just uses the [DeleteObject]
function from the Win32 API.

Example

// Delete the object for font #10
deleteFont(10);

https://docs.microsoft.com/en-us/windows/win32/api/wingdi/nf-wingdi-deleteobject

See Also

setCtlFont

deleteRegValue

Syntax

int deleteRegValue(char *szValueName[, varargs]...)

Arguments

szValueName
String with the name of the value to delete. May contain
printf-style formatting codes as well as FM !-codes.

varargs
A list of optional arguments used to perform printf-style
formatting on the szValueName string.

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid

ERROR_CANTOPEN registry key could not be
opened

ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on
a Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Deletes a specified value under the current registry key.

See Also

getRegRoot, setRegPath

DESIGNTIME

Syntax

bool DESIGNTIME

Description

Use the DESIGNTIME system variable to test if the plug-in is
running inside the FilterMeister editor (true) or as a stand-alone
compiled plug-in (false).

Example

If you want to create a plug-in without a dialog window, you can
use the following code. The use of DESIGNTIME helps to keep
the FilterMeister editor open whilst creating the plug-in.

OnFilterStart: {
 if (!DESIGNTIME) {
 doAction(CA_APPLY);
 }
 return true;
}

destroyMenu

Syntax

void destroyMenu(int hMenu)

Arguments

hMenu
Handle to the menu to be destroyed

Description

Destroys the given menu object.

Example

%ffp

ctl[0]: PUSHBUTTON, "Click Me!"

OnCtl(n): {

 if (n==0 && e == FME_CLICKED){

 int menu = 0;
 menu = createPopupMenu();

 insertMenuItem(menu, 1, "Do This", MFS_ENABLED ,
NULL);
 insertMenuItem(menu, 2, "Do That", MFS_ENABLED |
MFS_DEFAULT, NULL);
 insertMenuItem(menu, 3, "Do Nothing", MFS_ENABLED,
NULL);

 Info("Selection: %d", trackPopupMenu(menu, 1, 0, 0, 0)
);

 destroyMenu(menu);
 }

 return false;
}

See Also

createPopupMenu, insertMenuItem, trackPopupMenu

dif

Syntax

int dif(int a, int b)

Arguments

a
Any integer.

b
Any integer

Return

The absolute difference of the integers a and b.

Description

This function returns the absolute difference of the two
arguments, and is equivalent to the function abs(a-b). (An
absolute difference is computed by subtracting one argument
from the other and ignoring the sign of the result).

Example

// sets 'p' to 127
int p = dif(128,255);

See Also

abs

doAction

Syntax

doAction(int action)

Arguments

action
The action to be performed (preview, apply, cancel etc)

Description

Performs one of several predefined control actions specified by
its argument action, where action may have one of the following
predefined symbolic constant values:

Symbolic
Constant Control Action

CA_PREVIEW Updates the proxy preview window.

CA_APPLY Applies the filter to the original source image and
exits the plug-in.

CA_CANCEL Exits the plug-in filter without modifying the
original source image.

CA_EDIT Enters or exits source code editing mode
(ignored in standalone filters).

CA_ABOUT Displays the ABOUT dialog box.
CA_RESET Resets all controls to their initial values.
CA_NONE Performs no action.

Example

// Display the plug-in about box
doAction(CA_ABOUT);

doingProxy

Syntax

bool doingProxy

Description

doingProxy is True if the filter is running, and False if the filter is
applying the effect to the image in the host program.

With the doingProxy function you can check if the filter is
processing the proxy image ('preview image') or the original
image (layer) in the host program.

Since it sometimes can be useful to let the filter process the
preview image and the final image differently, the doingProxy
constant can be used to seperate them in your code. You might
e.g. want to add guide lines in your preview image and not in the
final image, or you might prefer to add a watermark to the final
image and not in the preview (e.g. in case you create a demo
version of your plug-in).

Example

if (doingProxy) {
 // execute this if filter is running
}
else {
 // execute this if filter is
 // applying effect to host image
}

See Also

Constants

doingScripting

Syntax

bool doingScripting

Description

doingScripting is true if the filter is running via Photoshop's
scripting mechanisms, and false if the filter is applying the effect
to the image in the host program (with or without a dialog).

With the doingScripting variable you can check if the filter is
running in scripting mode (ie without a UI dialog window, with
parameters passed directly from Photoshop).

Example

if (doingScripting) {
 // get scripting parameters here
}
else {
 if (doingProxy) {
 // Code for managing UI dialog
 }
}

// Image processing code here

See Also

Constants, doingProxy

EDIT

Syntax

ctl[n]: EDIT(Class Specific Properties), Other Properties

Description

The EDIT class creates a text edit control on the filter dialog
window.

Class Specific Properties

AUTOHSCROLL
Allows the text entered to extend longer than the width of
the control.

AUTOVSCROLL
Allows the text entered to extend longer than the height of
the control.

CENTER
Centers the text in the edit control

LEFT
Aligns the text to the left of the control

LOWERCASE
Converts any text typed into the control into lowercase.

MULTILINE
Extends the text control to multiple lines and allows newline
characters to be entered.

NOHIDESEL
Doesn't hide the selected text when the control loses focus.

NUMBER
Restricts the text that can be entered into the control to
numbers only.

PASSWORD

Masks the text typed into the control, displaying them as
asterisks.

READONLY
Prevents the text in the control from being edited.

RIGHT
Aligns the text to the right of the control

UPPERCASE
Converts any text typed into the control into uppercase.

Example

ctl[0]: EDIT(RIGHT,UPPERCASE), Pos=(50,100)
ctl[1]: EDIT(RIGHT,NUMBER), Pos=(50,120), size=(15,10),
"0"

OnCtl(n): {
 int r;

 if (n==1) {
 r = (int)strtod(getCtlText(1), 0);
 }
}

Notes

This control is only available as of FilterMeister 1.0 Beta 8.5.

Note that the Lowercase, Uppercase and Number modifiers do
not prevent excluded characters from being pasted into the
control.

When using the Multiline property, remember that native
Windows controls use \r\n as a line ending, not just \n on its
own.

egm
NB: Not available in current FM versions

Syntax

int egm(int edge_a, int edge_b, int value)

Arguments

edge_a
Bottom edge value

edge_b
Top edge value

value
Value that will be edge wrapped.

Return

The edge-mirrored value will be returned.

Description

This function returns the value untouched if it lies between
bottom and top. If it lies outside bottom and top, the value will be
edge mirrored to lie between bottom and top. For example, an
input value of 21 will be returned as 19 if edge_a = 10 and edge_b
= 20.

Example

%ffp

ctl(0): "Bottom", Range=(0,255), Val=20

ctl(1): "Top", Range=(0,255), Val=100

ForEveryTile:
{
 setCtlRange(0,0,min(X,Y));
 setCtlRange(1,0,min(X,Y));

 for (y=y_start; y < y_end; y++) {
 updateProgress(y,y_end);
 for (x=x_start; x < x_end; x++) {
 for (z=0; z < Z; z++) {

 pset(x, y, z, src(egm(ctl(0),ctl(1),x) ,
egm(ctl(0),ctl(1),y) , z));

 }
 }
 }

 return true;
}

See Also

set_edge_mode, egw

egw

Syntax

int egw (int bottom, int top, int value)

Arguments

bottom
Bottom edge value

top
Top edge value

value
Value that will be edge wrapped.

Return

The edge-wrapped value will be returned.

Description

This function returns the value untouched if it lies between
bottom and top. If it lies outside bottom and top, the value will be
edge wrapped to lie between bottom and top. For example, a
value of 21 would be returned as 11 if bottom=10 and top=20 or
returned as 12 if bottom=10 and top=19.

Example

%ffp

ctl(0): "Bottom", Range=(0,255), Val=20
ctl(1): "Top", Range=(0,255), Val=100

ForEveryTile:
{
 setCtlRange(0,0,min(X,Y));
 setCtlRange(1,0,min(X,Y));

 for (y=y_start; y < y_end; y++) {
 updateProgress(y,y_end);
 for (x=x_start; x < x_end; x++) {
 for (z=0; z < Z; z++) {

 pset(x, y, z, src(egw(ctl(0),ctl(1),x) ,
egw(ctl(0),ctl(1),y) , z));

 }
 }
 }

 return true;
}

See Also

set_edge_mode, egw

enableCtl

Syntax

int enableCtl(int n, int level);

Arguments

n
Control number whose state will be set.

level
State of the control. Set 3 for visible and enabled, 0 for
invisible or 1 for disabled.

Return

Returns the previous state of the control. Usually this value isn't
needed.

Description

Sets the state of a control.

Example

enableCtl(0, 1); //disables a visible user control
enableCtl(5, 0); //makes user control 5 invisible and
disabled

See Also

ctlEnabled

enableToolTipBalloon

Syntax

bool enableToolTipBalloon(bool enable)

Arguments

enable
TRUE if you want balloon tooltips, FALSE if you want normal
(box) tooltips.

Return

Returns the previous state.

Description

Use this function to set the style of tooltips.

endSetPixel

Syntax

void endSetPixel(int ctl)

Arguments

ctl
The control number of the control you were drawing on
using Control drawing functions.

Description

Stops drawing to an OWNERDRAW control and display it on
screen.

Example

ctl(1): OWNERDRAW(drawitem), Pos=(300,50), size=(100, 100)
startSetPixel(1);
setRectFill(10, 20, 30, 40, RGB(255, 0, 0));
endSetPixel(1);

See Also

startSetPixel, setPixel, setRectFill

enterCriticalSection

Syntax

bool enterCriticalSection(int hCS)

Arguments

hCS
Specifies the handle of the Critical Section to be entered, as
returned by a call to createCriticalSection.

Return

This function returns true when access to this Critical Section is
granted to the calling thread, or false if hCS is 0.

Description

This function waits for ownership of the specified Critical
Section. If another thread currently owns this Critical Section,
then this function waits until the owning thread leaves the
Critical Section, at which point one of the threads waiting to
enter the Critical Section is granted access. If no other thread
currently owns the Critical Section, the calling thread is granted
immediate access.

For more information about Critical Sections, see the MSDN
documentation about [Critical Section Objects].

Comments

One need not normally test the return value of
enterCriticalSection. This is merely a check to make sure that

http://msdn.microsoft.com/en-us/library/ms682530(VS.85).aspx

hCS is non-zero so the EnterCriticalSection Win32 API won't
cause a memory access violation.

Example

See the createCriticalSection example.

See Also

System Functions, createCriticalSection,
tryEnterCriticalSection, leaveCriticalSection,
deleteCriticalSection

enumRegValue

Syntax

int enumRegValue(int index, lpsz szValueName, int
maxValueNameLen, int *piType, int *pcbData)

Arguments

index
is the zero-based index for the next value name to be
retrieved

szValueName
is a character string buffer to receive the value name

maxValueNameLen
is the size of the szValueName buffer in bytes (including
room for the terminating null character)

piType
is the address of an int variable which will receive a code
indicating the type of data associated with this value
(REG_DWORD for 32-bit integer data, REG_SZ for character
string data, REG_BINARY for byte sequence data)

pcbData
is the address of an int variable which will receive the size in
bytes of the data associated with this value

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid

ERROR_CANTOPEN registry key could not be
opened

ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on a
Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Enumerates the names of all values stored under the current key.

Example

// fetches installed fonts from
// the registry and loads them
// into a combobox (modified
// example, original code by Alex

// Hunter)

%fml

ctl[0]: COMBOBOX, "Style 1\nStyle 2\nStyle 3",
 Pos=(*,10), Size=(99,50),
 Val=0, Action=PREVIEW
ctl[1]: pushbutton, "Populate Font List", size=(80,15),
pos=(*,35)

int iRetVal;
int iDataType;
int iDataLen;

OnCtl(n): {

 if (n==1 && e== FME_CLICKED) {

 // clear the ComboBox control
 setCtlText(0, "");

 //save current registry path
 getRegPath(str9, 256);
 Info("path=%s",str9);

 setRegRoot(HKEY_LOCAL_MACHINE);
 setRegPath("SOFTWARE\\Microsoft\\Windows
NT\\CurrentVersion\\Fonts");

 //save current registry path
 getRegPath(str0, 256);
 Info("path=%s",str0);

 for (i=0, iRetVal=ERROR_SUCCESS; iRetVal ==
ERROR_SUCCESS; i++) {

 iRetVal = enumRegValue(i, str0, 256, &iDataType,
&iDataLen);

 if (i < 21) { Info("i=%i, iRetVal=%i, value=%s", i,
iRetVal, str0); }

 if (iRetVal == ERROR_SUCCESS) {
 setCtlItemText(0,i,str0);
 }
 }

 // restore registry path to
 // original value
 setRegPath(str9);
}

 return false;
}

See Also

getRegRoot, setRegRoot, getRegPath, setRegPath

Error

Syntax

int Error(string promptString, ...)

Arguments

promptString
Specifies the prompt string for the error message window.
This string may contain printf-style format descriptors,
which will be expanded using the succeeding arguments.

...
Variable number of arguments of varying types, should
correspond to the format descriptors in promptString.

Return

IDCANCEL, IDRETRY or IDIGNORE depending on which button
the user clicks.

Description

This function displays an error box containing a text string, a
CANCEL, a RETRY and an IGNORE button. Clicking the CANCEL
button returns the value IDCANCEL, clicking on RETRY returns
the value IDRETRY and clicking on IGNORE the value IDIGNORE.

Example

Error ("The setting %d of the scrollbar %d\nis not
allowed", ctl(i), i);

if (Error ("I'm not in the mood") == IDIGNORE)
 Warn("If you ignore me, I'll\ndeinstall !H");

See Also

msgBox

ErrorOk

Syntax

int ErrorOk(string promptString, ...)

Arguments

promptString
Specifies the prompt string for the error message window.
This string may contain printf-style format descriptors,
which will be expanded using the succeeding arguments.

...
Variable number of arguments of varying types, should
correspond to the format descriptors in promptString.

Return

IDOK once the user has clicked the Ok button.

Description

This function displays an error box containing a text string, and
an OK button. Clicking the OK button returns the value IDOK.

Example

ErrorOk ("Image is too small!!");

See Also

Error, msgBox

exp

Syntax

double exp(double x)

Arguments

x
Double-precision floating point value.

Return

Exponential of x.

Description

Returns the exponential value of parameter x.

expand

Syntax

int expand(int pointer, int size)

Arguments

pointer
Pointer to the block of memory to expand

size
The new size of the memory block, in bytes

Return

A pointer to the resized block of memory, or NULL if there was an
error resizing the memory block.

Description

Resizes a block of memory to a new, larger size. expand cannot
be used to make a memory block smaller (use realloc for this
instead). expand can only be used to expand memory "in place" -
that is, without moving the memory block to another position in
memory. For this reason, expand is not always able to give you
the maximum expansion that you ask for, so be sure to check the
size of the new block by using msize.

See Also

malloc, realloc, msize, free

fabs

Syntax

double fabs(double number)

Arguments

number
Any double or float number.

Return

The absolute value of the supplied argument.

Description

Returns the absolute value of a double or float number. When
supplied with a negative number, this function will return a
positive number of equal distance from zero.

Example

%ffp

OnFilterStart:
{
 Info("The absolute value of -1.23 is %f", abs(-1.23));
}

See Also

abs

false

Description

false is a Boolean constant representing a logical state of
"falsehood". In FilterMeister, any numeric value of 0 or ±0.0, the
NUL character constant, and any null pointer value may
represent a state of "falsehood". The integral numeric value 0 is
reserved as the canonical representation of "false". Thus, the
Boolean constant false has a numeric value of 0 when evaluated
in a numeric context.

Note that any zero or null value represents "falsehood", so the
integer constant 0, the floating point constants 0.0, -0.0, 0.0L,
and -0.0L, the pointer constant NULL , and the character constant
'\0' (NUL) will all evaluate as false in a Boolean or logical context.
A null string ("" or "\0"), however, will evaluate as true, since the
value of a character string is its address, and by convention no
object in FM may be allocated at address 0.

Comment

A common cause of mistakes in C or FM programming is to
assume that any true expression has the value 1 (or true). It is
bad programming style, and a frequent cause of subtle errors, to
code, for example:

if (flag==true) break;

since this code will not break if the value of flag is 77, which also
represents truth. Unless the programmer is specifically testing
for the value 1, the preferred idiom is:

if (flag) break;

which will break when flag contains any true value (i.e., any
value but 0, ±0.0, '\0', or NULL), and not just in the case that flag
has the value 1.

Note that this caution does not apply to the Boolean constant
false , since the canonical numeric value of false is 0. The only
other representation of falsity is a null pointer or a NUL
character, and the numeric value of these is always 0 in FM. Thus
the following code fragment, while poor style, will always break
correctly when flag has the value 0, ±0.0, false , '\0', or NULL .

if (flag==false) break;

Nevertheless, the preferred coding style is:

if (!flag) break;

Example

%ffp

OnFilterStart:{
 bool flag = false;

 Info("The integer value of false is %d", flag);

 if (flag) Info("This should not appear");

 return false;
}

This snippet will display a single message box with the message:

The integer value of false is 0

See Also

true, Constants

fc2d

Syntax

double fc2d(double x, double y)

Arguments

x
A double-precision floating-point pixel x-coordinate.

y
A double-precision floating-point pixel y-coordinate.

Return

A double-precision floating-point value in the range -511 to 512.

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the origin [0,0], and
'm' is the 'magnitude' of the distance from the origin. The c2d()
function returns the polar coordinate direction 'd' for the pixel at
[x,y], relative to the top left corner of the image. A 'd' value of 0
represents the direction to the right along the x-axis (ie y=0); a
value of 256 represents the direction downward along the y-axis
(ie x=0); a value of 512 represents the direction to the left along
the x-axis (where y=0); and a value of -256 represents the upward
direction on the y-axis (where x=0). Naturally, intermediate
values represent the intermediate angles.

Comment

Note that there is a bug in fc2d, so that it doesn't give exactly the
same results as c2d.

Example

%ffp

ForEveryTile:
{

for (y=y_start; y<y_end; ++y)
{
 for (x=x_start; x<x_end; ++x)
 {
 for (z=0; z<Z; ++z)
 {
 pset(x, y, z, (256 * fabs(fc2d(x-X/2, y-Y/2)))/512);
 }
 }
}

return true;

See Also

c2m, r2x, r2y

fc2m

Syntax

double fc2m(double x, double y)

Arguments

x
A double floating-point pixel x-coordinate.

y
A double floating-point pixel y-coordinate.

Return

An double floating-point value giving the distance from the
center of the image to the pixel at coordinates [x,y].

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the origin and 'm' is
the 'magnitude' of the distance from the origin. The c2m()
function returns the polar coordinate magnitude 'm' for the pixel
at [x,y], relative to the top left corner of the image.

Example

%ffp

ForEveryTile: {

 for (y=y_start; y < y_end; ++y) {
 for (x=x_start; x < x_end; ++x) {
 for (z=0; z < Z; ++z) {

 pset(x, y, z, (256 * (fc2m(x-X/2, y-Y/2)))/128);

 }
 }
 }

 return true;
}

See Also

c2d, fc2d, r2x, r2y

fCallLib

Syntax

double fCallLib(void *fnptr, ...)

Arguments

fnptr
A pointer (obtained with getLibFn) to the DLL function to
call.

...
The other parameters required by the DLL function (varies
depending on the function).

Return

Returns the return value of the called DLL function, which varies
depending on the function called.

Description

Calls a function in a DLL that has previously been loaded with
loadLib and getLibFn.

Comment

In most cases, you would use the callLib function. Only use
fCallLib if the DLL function you are calling returns a double value.

See Also

callLib, loadLib, getLibFn, freeLib

fclose

Syntax

int fclose(int filepointer)

Arguments

filepointer
A pointer to a file/stream previously opened with fopen.

Return

Returns 0 if the file is closed successfully, and EOF if it
encounters any problems.

Description

Closes a file or stream, writing any data remaining in the writing
buffer to the file and freeing the file for use by other programs.

Example

int IMG_FILE;
if (IMG_FILE = fopen("d:\\FM_image0.fmi", "wb"))
{
 // Write out the src pixels as raw data
 for (z=0; z<Z; z++)
 for (y=0; y<Y; y++)
 for (x=0; x<X; x++)
 fputc(src(x,y,z), IMG_FILE);
}
else
 ErrorOk("Cannot write image file\nDrive is either full

or write-protected!");

if (fclose(IMG_FILE))
 ErrorOk("Cannot close image file!");

See Also

fopen, fcloseall

fcloseall

Syntax

int fcloseall()

Return

Always returns 0.

Description

Closes all opened files and streams, writing any data remaining in
the writing buffers to the files and freeing the files for use by
other programs.

Example

int inFile, outFile;
if (inFile = fopen("d:\\source.bmp", "rb")) {
 if (outFile = fopen("d:\\destination.bmp", "wb")) {
 while (i = fgetc(inFile)) {
 fputc(i, outFile);
 }
 }
 fcloseall();
}

See Also

fopen, fclose

feof

Syntax

int feof(int filepointer)

Arguments

filepointer
Pointer to a file as returned by fopen and such.

Return

non-zero value if end-of-file, 0 otherwise.

Description

Tests the end-of-file indicator for the specified file. If the file is at
the end-of-file, then it returns a nonzero value. If it is not at the
end of the file, then it returns zero.

ferror

Syntax

int ferror(int filepointer)

Arguments

filepointer
Pointer to a file such as created by fopen.

Return

Zero if no error is set for the specified file, non-zero value
otherwise.

Description

Tests the error indicator for the specified file. If the error
indicator is set, then it returns a nonzero value. If the error
indicator is not set, then it returns zero.

See Also

clearerr

ffillArray

Syntax

bool ffillArray(int nr, double dval)

Arguments

nr
Number of the array. Values from 0 to 99 are allowed.

dval
Floating-point value to fill the Array

Return

Returns true if successful, or false if an error occurred (e.g.,
incorrect value for nr or byte-size of Array).

Description

Function for filling an Array with a certain floating-point value;
e.g., for initializing all elements of the Array to -0.5. The byte-size
of the Array must be 2, 4, or 8. If the byte-size is 2 or 4, dval will
be converted from double to half (16-bit) or float (32-bit), resp.,
format before storing it in the Array.

Example

%ffp
OnFilterStart:{
 allocArray (0,100,0,0,4);
 ffillArray (0, -0.5);
 Info ("The Array was filled with the value: %g",
fgetArray(0, rnd(0,99) ,0,0));

 freeArray(0);
 return false;
}

See Also

fillArray, allocArray, freeArray, fgetArray, fputArray,
getArrayDim, copyArray

fflush

Syntax

int fflush(int filepointer)

Arguments

filepointer
A pointer to a file/stream previously opened with fopen.

Return

Returns 0 if the file is flushed successfully, and EOF if it
encounters any problems.

Description

Writes all remaining data in the writing buffer of the specified
filepointer to the associated file.

The main use of this function is security; ensuring the data is
stored in the file in order to protect against crashes. Use this
function if your file format allows processing of the partial file.

Example

int IMG_FILE;
if (IMG_FILE = fopen("d:\\FM_image0.fmi", "wb")) {
 // Write out the src pixels as raw data
 for (z = 0; z < Z; ++z) {
 for (y = 0; y < Y; ++y) {
 for (x = 0; x < X; ++x) {
 fputc(src(x, y, z), IMG_FILE);

 }
 }
 fflush(IMG_FILE); // ensure complete channel is stored
before next channel is written.
 }
}
else
 ErrorOk("Cannot write image file\nDrive is either full
or write-protected!");

if (fclose(IMG_FILE))
 ErrorOk("Cannot close image file!");

See Also

flushall

fgColor

Syntax

int fgColor

Description

The currently chosen foreground color value in the host
application (ie Photoshop®, Paint Shop Pro®).

Example

%fml
ctl[0]: OWNERDRAW, Size=(50,50), Pos=(240,3)
ctl[1]: OWNERDRAW, Size=(50,50), Pos=(300,3)
ctl[2]: STATICTEXT, Text="Foreground", Pos=(240, 55)
ctl[3]: STATICTEXT, Text="Background", Pos=(300, 55)

OnFilterStart: {
 setCtlColor(0, fgColor);
 setCtlColor(1, bgColor);
 return true;
}

See Also

bgColor, setCtlColor

fgetArray

Syntax

double fgetArray (int nr, int x, int y, int z)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

Return

Returns the double floating-point value that was stored at the
specified coordinates in the array. If the specified coordinates lie
outside the array or the index nr is invalid, the value 0.0 will be
returned. The byte-size of the Array must be 2 (half), 4 (float), or
8 (double); otherwise 0.0 will be returned.

Description

This function lets you read a floating-point value from an array.

Example

See allocArray

See Also

allocArray, freeArray, getArray, fgetArray, putArray, fputArray,
getArrayDim, copyArray, ffillArray

fgetc

Syntax

int fgetc(int * fileptr)

Arguments

fileptr
Pointer to a file opened using fopen.

Return

The byte (unsigned) read from the file if successful, otherwise -1.

Description

Reads a single byte from the file referenced by fileptr.

See Also

fopen, fputc, getc, fgets, fread

fgetpos

Syntax

int fgetpos(int *fileptr, int *pos)

Arguments

fileptr
Pointer to a file opened using fopen.

pos
Pointer to the current position in the file.

Return

Returns 0 if successful, otherwise non-zero and sets errno to the
relevant error value. The file position pointer is stored in the pos
parameter.

Description

Gets the current position in the file. You can use the position
pointer retrieved by this function in future calls to fsetpos.

See Also

fopen, fputs, fread, fsetpos, fclose

fgets

Syntax

char * fgets(char * s, int n, int * fileptr)

Arguments

s
Pointer to a string which will contain the bytes read.

n
Maximum number of bytes to read.

fileptr
Pointer to a file opened using fopen.

Return

A pointer to string s if successful, otherwise NULL.

Description

Reads up to n number of bytes from the file referenced by fileptr
into string s.

This function will add a NULL to the end of the string, so make
sure to make n less than the memory allocated for string s.

See Also

fopen, fputs, fgetc, fread

fillArray

Syntax

bool fillArray (int nr, int val)

Arguments

nr
Number of the Array. Values from 0 to 99 are allowed.

val
Value to fill array

Return

Returns true if successful, or false if an error occurred (e.g.,
incorrect value for nr or byte-size of Array).

Description

Function for filling an array with a certain byte, short, integer, or
double value, e.g. for initializing all cells of the array to zero. If
the byte-size of the Array is 1, 2, or 4, then val is converted to an
8-bit, 16-bit, or 32-bit integer as needed. If the byte-size of the
Array is 8, then val is converted to a 64-bit double floating-point
value (not a 64-bit integer!) for storage in the Array.

Comments

Note that the use of fillArray to store a 64-bit floating-point value
in the Array is deprecated; use ffillArray instead.

Example

%ffp

OnFilterStart:{

 allocArray (0,100,0,0,1);
 fillArray (0, 112);
 Info ("The array was filled with the value: %d",
getArray(0, rnd(0,99) ,0,0));
 freeArray(0);

 return false;
}

See Also

ffillArray, allocArray, freeArray, getArray, putArray,
getArrayDim, copyArray

filterCase

Syntax

int filterCase

Description

The type of data being filtered: Flat with no selection (1), Flat with
a selection (2), Floating (3), Layer with editable transparency and
no selection (4), Layer with editable transparency and a selection
(5), Layer with preserved transparency and no selection (6), or
Layer with preserved transparency and a selection (7).

A zero indicates that the host did not set this variable, and the
plug-in should look at the haveMask and isFloating variables to
determine the filter case.

Example

%ffp

OnFilterStart: {
 switch(filterCase) {
 case 0:
 Info ("Unknown filterCase");
 break;
 case 1:
 Info ("Flat with no selection");
 break;
 case 2:
 Info ("Flat with a selection");
 break;
 case 3:

 Info ("Floating");
 break;
 case 4:
 Info ("Layer with editable transparency and no
selection");
 break;
 case 5:
 Info ("Layer with editable transparency and a
selection");
 break;
 case 6:
 Info ("Layer with preserved transparency and no
selection");
 break;
 case 7:
 Info ("Layer with preserved transparency and a
selection");
 break;
 default:
 Info ("Unknown filterCase");
 break;
 }
 return false;
}

filterInstallDir

Syntax

int filterInstallDir

Description

The full path name of the directory from which your filter was
loaded (which is presumably the directory in which it was
installed). This can be useful for locating files (such as HTML help
files) which were installed as separate resources in your filter's
installation directory.

Comment

Note that at filter design time, filterInstallDir will contain the
name of the directory from which FilterMeister itself was loaded,
not the directory from which your target filter will ultimately be
loaded at run-time.

Example

Info(filterInstallDir);

filterUniqueID

Syntax

string filterUniqueID

Description

The UniqueID string value (up to 36 characters) used to identify
your plug-in uniquely to the scripting system. The UniqueID is
needed for scripting so that Photoshop® and other programs can
distinguish between your plug-in and other plug-ins. Two
different plug-ins with the same UniqueID will be treated as the
same plug-in by Photoshop, so make sure your UniqueID is really
unique, otherwise another plug-in may be executed instead of
yours.

Comment

If you do not define UniqueID at the top of your code, FM will
generate a random UniqueID every time it is launched.

Example

%ffp

// UniqueID: "d5326b0c-7c78-26c7-97bc-00c0d1465278"

OnFilterStart:{
 Info ("%s",filterUniqueID);
 return false;
}

findClose

Syntax

int findClose(int *searchHandle)

Arguments

searchHandle
A search handle from a previous call to findFirstFile /
findNextFile.

Return

Returns 0 if the function failed, or non-zero if the function
succeeded.

Description

Closes a file search handle opened with findFirstFile.

Comment

Internally, findClose is a simple wrapper around the built-in
Windows [Win32 FindClose API] function.

Example

%ffp

OnFilterStart: {

 int Handle, Attribute;

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-findclose

 // Search for 8bf files in the filterInstallDir
 snprintf(str1, 255, "%s*.8bf", filterInstallDir);

 // Optionally, search the C: root instead
 //strcpy(str1,"C:\\");

 Handle = findFirstFile (str1, str9, &Attribute);
 if (Attribute != FILE_ATTRIBUTE_DIRECTORY)
 Info ("%s - %d",str9, Attribute);

 if (Handle != INVALID_HANDLE_VALUE){
 while (findNextFile(Handle, str9, &Attribute) != 0) {
 if (Attribute != FILE_ATTRIBUTE_DIRECTORY)
 Info ("%s - %d",str9, Attribute);
 }
 }

 findClose(Handle);

 return false;
}

See Also

findFirstFile, findNextFile

findFirstFile

Syntax

int findFirstFile(char* lpFileName, char* foundItem, int
*dwFileAttributes)

Arguments

lpFileName
The path to the directory to start looking for files. This can
be appended with a wildcard to search for specific files.

foundItem
A string where the name of the found file will be stored.

dwFileAttributes
An integer where the attributes of the located file will be
stored (see below for attributes list).

File Attributes

FILE_ATTRIBUTE_ARCHIVE A file or directory that is an
archive file or directory.

FILE_ATTRIBUTE_COMPRESS
ED

A file or directory that is
compressed.

FILE_ATTRIBUTE_DEVICE This value is reserved for system
use.

FILE_ATTRIBUTE_DIRECTORY The handle that identifies a
directory.

FILE_ATTRIBUTE_ENCRYPTE
D

A file or directory that is
encrypted.

FILE_ATTRIBUTE_HIDDEN
The file or directory is hidden. It
is not included in an ordinary
directory listing.

FILE_ATTRIBUTE_INTEGRITY
_STREAM

The directory or user data
stream is configured with
integrity (only supported on
ReFS volumes).

FILE_ATTRIBUTE_NORMAL
A file that does not have other
attributes set. This attribute is
valid only when used alone.

FILE_ATTRIBUTE_NOT_CON
TENT_INDEXED

The file or directory is not to be
indexed by the content indexing
service.

FILE_ATTRIBUTE_NO_SCRUB
_DATA

The user data stream not to be
read by the background data
integrity scanner (AKA
scrubber).

FILE_ATTRIBUTE_OFFLINE The file data is physically moved
to offline storage.

FILE_ATTRIBUTE_READONLY A file that is read-only.

FILE_ATTRIBUTE_RECALL_O
N_DATA_ACCESS

The file or directory is not fully
present locally. For a file that
means that not all of its data is
on local storage (e.g. it may be
sparse with some data still in
remote storage).

FILE_ATTRIBUTE_RECALL_O
N_OPEN

The file or directory has no
physical representation on the
local system; the item is virtual.

FILE_ATTRIBUTE_REPARSE_P
OINT A file that is a symbolic link.

FILE_ATTRIBUTE_SPARSE_FI
LE A file that is a sparse file.

FILE_ATTRIBUTE_SYSTEM
A file or directory that the
operating system uses a part of,
or uses exclusively.

FILE_ATTRIBUTE_TEMPORAR A file that is being used for

Y temporary storage.

FILE_ATTRIBUTE_VIRTUAL This value is reserved for system
use.

Return

Returns INVALID_HANDLE_VALUE if the search failed or could
not find any files. Otherwise it returns a search handle that can
be used in subsequent calls to findNextFile or findClose.

Description

Searches a directory for a file or subdirectory matching the given
name or wildcard.

Example

%ffp

OnFilterStart: {

 int Handle, Attribute;

 // Search for 8bf files in the filterInstallDir
 snprintf(str1, 255, "%s*.8bf", filterInstallDir);

 // Optionally, search the C: root instead
 //strcpy(str1,"C:\\");

 Handle = findFirstFile (str1, str9, &Attribute);
 if (Attribute != FILE_ATTRIBUTE_DIRECTORY)
 Info ("%s - %d",str9, Attribute);

 if (Handle != INVALID_HANDLE_VALUE){
 while (findNextFile(Handle, str9, &Attribute) != 0) {

 if (Attribute != FILE_ATTRIBUTE_DIRECTORY)
 Info ("%s - %d",str9, Attribute);
 }
 }

 findClose(Handle);

 return false;
}

See Also

findNextFile, findClose

findNextFile

Syntax

int findNextFile(int* hFindFile, char* foundItem, int
*dwFileAttributes)

Arguments

hFindFile
Search handle obtained from a previous call to findFirstFile

foundItem
A string where the name of the found file will be stored.

dwFileAttributes
An integer where the attributes of the located file will be
stored (see below for attributes list).

File Attributes

FILE_ATTRIBUTE_ARCHIVE A file or directory that is an
archive file or directory.

FILE_ATTRIBUTE_COMPRES
SED

A file or directory that is
compressed.

FILE_ATTRIBUTE_DEVICE This value is reserved for system
use.

FILE_ATTRIBUTE_DIRECTOR
Y

The handle that identifies a
directory.

FILE_ATTRIBUTE_ENCRYPTE
D

A file or directory that is
encrypted.

FILE_ATTRIBUTE_HIDDEN
The file or directory is hidden. It
is not included in an ordinary
directory listing.

FILE_ATTRIBUTE_INTEGRIT The directory or user data

Y_STREAM stream is configured with
integrity (only supported on ReFS
volumes).

FILE_ATTRIBUTE_NORMAL
A file that does not have other
attributes set. This attribute is
valid only when used alone.

FILE_ATTRIBUTE_NOT_CON
TENT_INDEXED

The file or directory is not to be
indexed by the content indexing
service.

FILE_ATTRIBUTE_NO_SCRU
B_DATA

The user data stream not to be
read by the background data
integrity scanner (AKA scrubber).

FILE_ATTRIBUTE_OFFLINE The file data is physically moved
to offline storage.

FILE_ATTRIBUTE_READONLY A file that is read-only.

FILE_ATTRIBUTE_RECALL_O
N_DATA_ACCESS

The file or directory is not fully
present locally. For a file that
means that not all of its data is
on local storage (e.g. it may be
sparse with some data still in
remote storage).

FILE_ATTRIBUTE_RECALL_O
N_OPEN

The file or directory has no
physical representation on the
local system; the item is virtual.

FILE_ATTRIBUTE_REPARSE_
POINT A file that is a symbolic link.

FILE_ATTRIBUTE_SPARSE_FI
LE A file that is a sparse file.

FILE_ATTRIBUTE_SYSTEM
A file or directory that the
operating system uses a part of,
or uses exclusively.

FILE_ATTRIBUTE_TEMPORA
RY

A file that is being used for
temporary storage.

FILE_ATTRIBUTE_VIRTUAL This value is reserved for system
use.

Return

Returns INVALID_HANDLE_VALUE if the search failed or could
not find any files. Otherwise it returns a search handle that can
be used in subsequent calls to findNextFile or findClose.

Description

Searches a directory for another file or subdirectory matching
the given name or wildcard associated with the search handle
from a previous call to findFirstFile.

Example

%ffp

OnFilterStart: {

 int Handle, Attribute;

 // Search for 8bf files in the filterInstallDir
 snprintf(str1, 255, "%s*.8bf", filterInstallDir);

 // Optionally, search the C: root instead
 //strcpy(str1,"C:\\");

 Handle = findFirstFile (str1, str9, &Attribute);
 if (Attribute != FILE_ATTRIBUTE_DIRECTORY)
 Info ("%s - %d",str9, Attribute);

 if (Handle != INVALID_HANDLE_VALUE){
 while (findNextFile(Handle, str9, &Attribute) != 0) {

 if (Attribute != FILE_ATTRIBUTE_DIRECTORY)
 Info ("%s - %d",str9, Attribute);
 }
 }

 findClose(Handle);

 return false;
}

See Also

findFirstFile, findClose

floor

Syntax

double floor(double number)

Arguments

number
Any double or float number.

Return

The rounded value.

Description

Returns the largest integral value smaller than or equal to
number.

Example

%ffp

OnFilterStart:
{
 Info("Rounding 2.345 to floor gives %f",
floor(2.345));
 Info("Rounding -2.345 to floor gives %f",
floor(-2.345));
}

See Also

ceil

flushall

Syntax

int flushall()

Return

Returns the number of files flushed.

Description

Writes all remaining data in the writing buffer of all opened files
and streams.

The main use of this function is security; ensuring the data is
stored in the file in order to protect against crashes. Use this
function if your file format allows processing of the partial file.

Example

int FMI_FILE;
if (FMI_FILE = fopen("d:\\FM_image0.fmi", "wb")) {
 // Write out the src pixels as raw data
 for (z = 0; z < Z; ++z) {
 for (y = 0; y < Y; ++y) {
 for (x = 0; x < X; ++x) {
 fputc(src(x, y, z), IMG_FILE);
 }
 }
 flushall(); // ensure complete channel is stored
before next channel is written.
 }
}

else
 ErrorOk("Cannot write image file\nDrive is either full
or write-protected!");

if (fclose(IMG_FILE))
 ErrorOk("Cannot close image file!");

See Also

fflush

fmax

Syntax

double fmax(double a, double b, ...)

Arguments

a
Any floating-point double value.

b
Any floating-point double value.

...
Any number of floating-point double values.

Return

The higher value of all given parameters.

Description

Returns the largest of the given values.

Example

double p = fmax(1.0, 2.0); // sets p to 2.0

See Also

add, fmin, max, min, sub

FMC_TARGET
Only available from FM1.0 Beta9g MT4 onwards.

Syntax

int FMC_TARGET

Description

Integer value set by FilterMeister to 32 for 32-bit plugins, and 64
for 64-bit plugins. Only available from FM1.0 Beta9g MT4
onwards.

Example

%fml

ForEveryTile:
{
 Info("%d", FMC_TARGET);
 return true;
}

FME_CANCEL

Description

FME_CANCEL event is triggered when the user exits the plug-in
without applying the effect.

It also works for the ESC key and the x button in the titlebar.

To activate this event you need to use Dialog: cancelevent or
setDialogEvent(2) .

Comments

Since Beta 8.7 the event n== CTL_CANCEL && e==FME_CLICKED is
almost equivalent to the event e==FME_CANCEL

Example

%ffp
Dialog: cancelevent

OnCtl(n): {
 if (e==FME_CANCEL) {
 Info("You have just exited the plug-in");
 }
 return false;
}

See Also

FME_INIT, setDialogEvent

FME_DRAWITEM

Description

Event that is triggered when an OWNERDRAW control needs to
be redrawn.

FME_INIT

Description

The FME_INIT event is triggered before the FM dialog is
displayed. To activate this event you need to use Dialog:
initevent .

You can use the previous value to check if the plug-in is executed
for the first time in the host. In that case previous==false .

Comment

1) Using the instruction setDialogEvent(1) allows also to enable
the FME_INIT event. However, it isn't recommended to use that
by default, as it won't work for the very first launch of the plug-
in.

2) For your convenience, this event is also triggered each time
you recompile the code of your plug-in.

Example

%ffp
Dialog: initevent

OnCtl(n): {
 if (e==FME_INIT) {
 if (!previous)
 Info("plug-in launched for first time");
 else
 Info("plug-in just launched or recompiled");
 }

 return false;
}

See Also

FME_CANCEL, setDialogEvent

FME_KEYDOWN

Description

FME_KEYDOWN event is triggered when the user presses a
keyboard button.

The n value of the events contains the VK code of the pressed
key.

To activate the FME_KEYDOWN event you need use "Dialog:
keyevents" or setDialogEvent(4) in your code.

If you want to check for mouse buttons, Shift, Ctrl, Alt etc. you
need to use getAsyncKeyState() or getAsyncKeyStateF().

This event is only triggered once per keypress; it is not triggered
again if you hold the key.

Example

%ffp
Dialog: keyevents

OnCtl(n): {
 if (e == FME_KEYDOWN) {
 Info("You just pressed key %d", n);
 }
 return false;
}

See Also

FME_KEYUP, getAsyncKeyState, getAsyncKeyStateF,
setDialogEvent, VK codes

FME_KEYUP

Description

FME_KEYUP event is triggered when the user releases a
keyboard button.

The n value of the events contains the VK code of the released
key.

To activate the FME_KEYDOWN event you need use "Dialog:
keyevents" or setDialogEvent(4) in your code.

If you want to check for mouse buttons, Shift, Ctrl, Alt etc. you
need to use getAsyncKeyState or getAsyncKeyStateF.

Example

%ffp
Dialog: keyevents

OnCtl(n): {
 if (e == FME_KEYUP) {
 Info("You just released key %d", n);
 }
 return false;
}

See Also

FME_KEYDOWN, getAsyncKeyState, getAsyncKeyStateF,
setDialogEvent, VK codes

FME_MOUSEMOVE

Returned Parameters

n
Currently the mousemove event is only supported for the
preview. So n will be always equal to CTL_PREVIEW.

Description

This event is triggered for every move of the mouse pointer
above the preview. To get the coordinates of the mouse pointer
you have to use the getPreviewCoordX and getPreviewCoordY
functions.

Comment

No action will be performed after this event was processed. So if
you want to update the preview you have to add
doAction(CA_PREVIEW) to the code that processed this event in
the OnCtl handler.

Example

%ffp

ctl(10):statictext,"Please move the mouse over the
preview!",size=(150,*)

OnCtl(n):{

 if (n == CTL_PREVIEW && e == FME_MOUSEMOVE){
 setCtlTextv (10, "%d, %d", getPreviewCoordX(),
getPreviewCoordY());

 }

 return false;
}

See Also

FME_MOUSEOVER, FME_MOUSEOUT, getPreviewCoordX,
getPreviewCoordY

FME_MOUSEOUT

Returned Parameters

n
The number of the control which triggered this event.

Description

The mouseout event will be triggered when the mouse leaves the
screen space used by any control (numbered n) which has the
MOUSEOVER properties specified in its definition.

Comment

No action will be performed after this event was processed. So if
you want to update the preview you have to add
doAction(CA_PREVIEW) to the code that processed this event in
the OnCtl handler.

Example

%ffp

ctl(0): statictext(MOUSEOVER), "Move the mouse over me"

OnCtl(n):{

 if (n == 0 && e == FME_MOUSEOVER){
 setCtlTextv (0, "Now move off me");
 }

 if (n == 0 && e == FME_MOUSEOUT){
 setCtlTextv (0, "Now move over me again");

 }

 return false;
}

See Also

FME_MOUSEMOVE, FME_MOUSEOVER

FME_MOUSEOVER

Returned Parameters

n
The number of the control which triggered this event.

Description

The mouseover event will be triggered when the mouse enters
the screen space used by any control (numbered n) which has the
MOUSEOVER properties specified in it's definition. It will only be
triggered once for every time spend hovering over the control, in
order to trigger an event with every movement over the control,
use the FME_MOUSEMOVE event.

Comment

No action will be performed after this event was processed. So if
you want to update the preview you have to add
doAction(CA_PREVIEW) to the code that processed this event in
the OnCtl handler.

Example

%ffp

ctl(0): statictext(MOUSEOVER), "Move the mouse over me"

OnCtl(n):{

 if (n == 0 && e == FME_MOUSEOVER){
 setCtlTextv (0, "Now move off me");
 }

 if (n == 0 && e == FME_MOUSEOUT){
 setCtlTextv (0, "Now move over me again");
 }

 return false;
}

See Also

FME_MOUSEMOVE, FME_MOUSEOUT

fmin

Syntax

double fmin(double a, double b, ...)

Arguments

a
Any floating-point double value.

b
Any floating-point double value.

...
Any number of floating-point double values.

Return

The lower value of all given parameters.

Description

Returns the least of the given values.

A common use for fmin is to truncate a variable to a certain
upper boundary.

Example

// sets p to 1.0
double p = fmin(1.0, 2.0);

See Also

add, fmax, max, min, sub

fmod

Syntax

double fmod(double x, double y)

Arguments

x
Value to be divided.

y
Divider.

Return

Remainder of x/y.

Description

Performs division x/y and returns the remainder of the
operation.

fopen

Syntax

int fopen(string filename, string mode)

Arguments

filename
The full pathname of the file to open. Use double backslashes
on Windows machines.

mode
The mode to open the file in, see below for details.

Return

Returns a pointer to the file stream that can be used in later file
operations, if the file was opened successfully. Returns NULL if
the file could not be opened.

Description

Opens a file or a stream, allowing it to be read from or written to.
The mode can be any of a number of settings, including:

r Opens the file for reading.

w Opens the file for writing, overwriting any currently existing
file.

a Opens the file in append mode, adding data to end of file or
creating new file if doesn't exist.

rb Open a file in binary mode for reading only.
wb Open or create a file in binary mode for writing only.
r+ Opens the file for reading and writing.

w+ Opens the file for reading and writing, overwriting any
currently existing file.

You can also specify whether the file should be opened in text or
binary mode by adding 't' or 'b' to the mode string respectively.
Text mode causes the program to interpret newlines differently
depending on the machine it is operating on (Unix, Windows and
Mac all have different newline endings). Binary mode is
recommended for most operations on data files.

Comments

If you repeatedly have problems opening a file, and you are sure
that it exists and isn't in use by other programs, check that you
have used double backslashes in the filename (like in the example
above). Otherwise character sequences such as \t or \n may be
interpreted as tabs & newlines respectively... which is not what
you want to happen.

Example

int IMG_FILE;
if (IMG_FILE = fopen("d:\\FM_image0.fmi", "wb")) {
 // Write out the src pixels
 // as raw data
 for (z=0; z<Z; z++)
 for (y=0; y<Y; y++)
 for (x=0; x<X; x++)
 fputc(src(x,y,z), IMG_FILE);
}
else
 ErrorOk("Cannot write image file\nDrive is either full
or write-protected!");

if (fclose(IMG_FILE))
 ErrorOk("Cannot close image file!");

See Also

fclose

formatString

Syntax

string formatString(string s)

Arguments

s
A string containing 2-character formatting substrings and
HTML entity codes

Return

Returns string s with substitutions made.

Description

Returns string s with the following substitutions made for the
designated 2-character substrings (all of which begin with "!" or
"&")

FM deals with 4 different escape characters, which are
substituted in 3 separate phases:

escape character '\'

Escape code sequences beginning with '\' are handled by the
parser, only during the parsing of string constants (not string
variables). FM performs the usual C-language substitutions: '\t'
for TAB, '\n' for new-line, '\r' for carriage-return, '\"' for a
double-quote, etc.

The '\' char itself is represented by the escape code '\\'.

escape character '%'

Escape codes beginning with '%' are handled by the next phase,
only during processing by built-in functions that take a variable
number of arguments (such as setDialogTextv). FM calls the C-
library routine sprintf (or some equivalent) which replaces the %-
escape codes with formatted representations of the optional
arguments according to the C-library conventions: "%d" for a
decimal number argument, "%s" for a character string argument,
etc.

The '%' char itself is represented by the escape code "%%".

escape characters '!' and '&'

Escape codes beginning with these characters are processed by
the formatString routine during the final pass.

Two-character escape codes begining with '!' are substituted
with an internal FM text string value: "!A" is replaced with the
contents of the built-in string filterAuthorText (which contains
the value of the Author: keyword field), "!C" is replaced by the
contents of the filterCategoryText string, etc.

The '!' char itself is represented by the escape code "!!".

Escape codes beginning with '&' and ending with ';' are HTML
entity references. FM replaces the escape code sequence """ with
a double-quote character, "€" with the euro character, etc.

The '&' char itself is represented by the escape code "&&" or "&".

In summary, if your character string will be processed by any one
of the above 3 passes, the escape character(s) for that pass can be
represented by doubling the escape character in question. (If

your string will NOT be processed by some particular pass, then
the escape character(s) for that pass should NOT be doubled.)

! escape sequences

substring is replaced by
&& "&" (i.e., a verbatim ampersand)
!! "!" (i.e., a verbatim exclamation point)

!A text specified by the Author key, obtained from the
filterAuthorText string

!a text specified by the About key, obtained from the
filterAboutText string

!C text specified by the Category key, obtained from the
filterCategoryText string

!c text specified by the Copyright key, obtained from the
filterCopyrightText string

!D text specified by the Description key, obtained from
the filterDescriptionText string

!d
text specified by the propTitle image property,
obtained from the documentTitleText string (not yet
implemented)

!F text specified by the Filename key, obtained from the
filterFilenameText string

!f the current Filter Case (e.g., "Flat image, no
selection"), obtained from the filterCaseText string

!H the name of the Host application (e.g., "Adobe
Photoshop"), obtained from the filterHostText string

!h the height of the image in pixels, obtained from the
imageHeight variable

!I the directory in which the plug-in filter was installed,
from the filterInstallDir string (not yet implemented)

!M the current Image Mode (e.g., "RGB Color"), obtained

from the filterImageModeText string

!m the current image mode as a decimal integer,
obtained from the imageMode variable

!O text specified by the Organization key, obtained from
the filterOrganizationText string

!S the current host serial number string, obtained from
the hostSerialString string (not yet implemented)

!s
the current host serial number as a decimal value,
from the hostSerialNumber variable (not yet
implemented)

!T text specified by the Title key, obtained from the
filterTitleText string

!t text specified by the Title key as above, with any
trailing ellipsis removed

!U text specified by the URL key, obtained from the
filterURLText string

!V text specified by the Version key, obtained from the
filterVersionText string

!w the width of the image in pixels, obtained from the
imageWidth variable

!X
the Host architecture of the host system running the
plug-in (either "32" for a 32-bit system or "64" for a
64-bit system) (implemented in FM mt5c05)

!x
the Target architecture the plug-in was compiled for
(eg "32" for a 32-bit plug-in, "64" for a 64-bit plug-in)
(implemented in FM mt5c05)

!Y the current year in decimal (e.g., for use in a
Copyright message) (implemented in 1.0 Beta 9.0c)

!z the current proxy preview zoom factor (1 - 16), from
the zoomFactor variable

Caution: Other substrings beginning with "!" are reserved for
future use.

HTML entities

formatString also substitutes ISO character codes for the
following HTML entity names.

Entity
name ISO Character meaning

Common Punctuation
" " double quote
& & ampersand
' ' apostrophe
… … horizontal ellipsis
¿ ¿ inverted question mark
¡ ¡ inverted exclamation mark
&Exclam; !! double exclamation mark
§ § section mark
¶ ¶ paragraph mark
&pilcrow; pilcrow (unfilled paragraph mark)
• • bullet
&bull2; bullet style 2
&ibull2; inverse bullet style 2

Currency and Commerce Symbols
¤ ¤ currency sign
¢ ¢ cent sign
£ £ pound sign
¥ ¥ Yen sign
€ € Euro sign
© © copyright
® ® registered trademark
™ ™ trademark

‰ ‰ per mille
¦ ¦ broken vertical bar
ª ª feminine ordinal
º º masculine ordinal
♂ ♂ male symbol
♀ ♀ female symbol

Science, Logic, and Mathematics Symbols
< < less than
> > greater than
≤ <= less or equal (substitute for ≤)
≥ >= greater or equal (substitute for ≥)
≠ != not equal (substitute for ≠)
≔ := (used for colon-equal)
∷ :: (used for double colon)
° ° degree sign
′ ′ prime, minutes, feet
″ ″ double prime, seconds, inches
¬ ¬ logical not
± ± plus-or-minus sign
− − minus sign (en-dash used as substitute)
× × multiplication symbol (times)
÷ ÷ Division sign
∗ ∗ low asterisk (asterisk used as substitute)
⋅ ⋅ dot operator
· · vertically centered dot
∅ ∅ Empty set
∼ ∼ similar to (tilde used as substitute)
¼ ¼ fraction 1/4

½ ½ fraction 1/2
¾ ¾ fraction 3/4
⁄ ⁄ fraction slash (use /)
‾ ‾ overline (use macron)
µ µ micro
ƒ ƒ f with hook
ℑ ℑ imaginary part (blackletter I)
ℜ ℜ real part (blackletter R)
℘ ℘ Weierstrass powerset (script P)

Markup-significant and Internationalization Characters
 non-breaking space

­ soft hyphen (never breaks in FM, so never
displays)

— — em dash
– – en dash
  em-space (use normal space)
  en-space (use normal space)
  thin space (use normal space)
‌ zero width non-joiner (no char)
‍ zero width joiner (no char)

Spacing Accents, Diaereses and other Diacritical Marks
´ ´ acute accent
¨ ¨ umlaut (diaeresis)
¸ ¸ spacing cedilla
ˆ ˆ modifier letter circumflex accent
˜ ˜ small tilde
¯ ¯ spacing macron (overhead line)

Uppercase Accented Letters and Ligatures
À À A grave

Á Á A acute
Â Â A circumflex
Ã Ã A tilde
Ä Ä A umlaut
Å Å A ring
Æ Æ A-E ligature
Ç Ç C cedilla
È È E grave
É É E acute
Ê Ê E circumflex
Ë Ë E umlaut
Ì Ì I grave
Í Í I acute
Î Î I circumflex
Ï Ï I umlaut
Ñ Ñ N tilde
Ò Ò O grave
Ó Ó O acute
Ô Ô O circumflex
Õ Õ O tilde
Ö Ö O umlaut
Ø Ø slashed O
Œ Œ O-E ligature
Š Š capital S with caron
Ù Ù U grave
Ú Ú U acute
Û Û U circumflex
Ü Ü U umlaut

Ý Ý Y acute
Ÿ Ÿ capital Y with diaeresis
Ž Ž capital Z with caron (not official)
Ð Ð capital letter Eth
Þ Þ capital letter Thorn

Lowercase Accented Letters and Ligatures
ß ß s-z ligature
à à a grave
á á a acute
â â a circumflex
ã ã a tilde
ä ä a umlaut
å å a ring
æ æ a-e ligature
ç ç c cedilla
è è e grave
é é e acute
ê ê e circumflex
ë ë e umlaut
ì ì i grave
í í i acute
î î i circumflex
ï ï i umlaut
ñ ñ n tilde
ò ò o grave
ó ó o acute
ô ô o circumflex
õ õ o tilde

ö ö o umlaut
ø ø slashed o
œ œ small o-e ligature
š š small s with caron
ù ù u grave
ú ú u acute
û û u circumflex
ü ü u umlaut
ý ý y acute
ÿ ÿ y umlaut
ž ž small z with caron (not official)
ð ð small letter eth
þ þ small letter thorn

Subscripts, Superscripts and Footnotes
¹ ¹ superscript 1
² ² superscript 2
³ ³ superscript 3
† † dagger
‡ ‡ double dagger

Various Quotation Marks
‘ ‘ left single quotation mark
’ ’ right single quotation mark
‚ ‚ single low-9 quotation mark
„ „ double low-9 quotation mark
“ “ left double quotation mark
” ” right double quotation mark
‹ ‹ left single angle quotation
› › right single angle quotation

« « left angle quote
» » right angle quote

Subset of Available Greek Characters
Α A Alpha (use latin capital A)
Β B Beta (use latin capital B)
Ε E Epsilon (use latin capital E)
Ζ Z Zeta (use latin capital Z)
Η H Eta (use latin capital H)
Ι I Iota (use latin capital I)
Κ K Kappa (use latin capital K)
Μ M Mu (use latin capital M)
Ν N Nu (use latin capital N)
Ο O Omicron (use latin capital O)
Ρ P Rho (use latin capital P)
Τ T Tau (use latin capital T)
Υ Y Upsilon (use latin capital Y)
Χ X Chi (use latin capital X)
β β beta (use sz-ligature; yecch!)
μ μ mu (use µ)
ο o omicron (use small latin o)

OEM Arrows, Line Drawing and Graphics
← ← leftwards arrow
↑ ↑ upwards arrow
→ → rightwards arrow

↵ ↵ carriage-return arrow (composed by two other
graohics)

↕ ↕ up/down (vertical) arrow (not official)
◂ ◂ left-pointing triangle, filled
░ ░ lightly shaded box

│ │ box drawing: vertical
┤ ┤ box drawing: vertical and left
┐ ┐ box drawing: down and left
└ └ box drawing: up and right
┴ ┴ box drawing: horizontal and up
┬ ┬ box drawing: horizontal and down
├ ├ box drawing: vertical and right
─ ─ box drawing: horizontal
┼ ┼ box drawing: vertical and horizontal
┘ ┘ box drawing: up and left
┌ ┌ box drawing: down and right
&twonotes; two beamed 16th notes

Notes

You do not usually need to call formatString() explicitly, since it is
implicitly applied in the following cases:

when displaying the text label for a dialog control,
when displaying the items in a LISTBOX or COMBOBOX
control,
when displaying the dialog caption in the title bar,
when displaying text in a Message Box via the msgBox(),
printf(), Info(), Warn(), Error(), ErrorOk(), YesNo(), or
YesNoCancel() built-in functions,
when displaying the prompt in the chooseColor() color-
picker dialog box,
when specifying the registry path and key names in the
Windows Systems Registry access functions,
when displaying the About text in the About dialog box.

Example

For example, the default Dialog text is "!t (!M, !f)", which
formatString() translates to something like "My Filter Title (RGB
Color, Flat image, no selection)" at run time.

See Also

appendEllipsis, stripEllipsis

fputArray

Syntax

int fputArray (int nr, int x, int y, int z, double dval)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

dval
Floating-point value that will be stored at the specified
coordinates in the array.

Return

Returns 0 for failure (invalid index nr, or invalid byte-size of
Array), and 1 for success.

Description

Lets you store a floating-point value in an array. When storing a
value into an Array with byte-size 2, the value will be converted
to a 16-bit half. For an Array of byte-size 4, the value is converted
to a 32-bit float. If the byte-size is not 2, 4, or 8, a value of 0 is
returned to indicate failure.)

Example

See fgetArray

See Also

allocArray, freeArray, getArray, fgetArray, putArray, fillArray,
ffillArray, getArrayDim, copyArray

fputc

Syntax

int fputc(int c, int * fileptr)

Arguments

c
An integer containing a byte value.

fileptr
Pointer to a file opened using fopen.

Return

The value of c if successful, otherwise -1.

Description

Write a single byte, contained in variable c to the file referenced
by fileptr.

See Also

fopen, fgetc, putc, fputs

fputs

Syntax

int fputs(char * s, int * fileptr)

Arguments

s
Pointer to a string which contains the bytes to be written.

fileptr
Pointer to a file opened using fopen.

Return

A positive number if successful, otherwise a negative number.

Description

Writes the contents of string s to the file referenced by fileptr.

See Also

fopen, fgets, fputc, fwrite

fr2x

Syntax

double fr2x(double d, double m)

Arguments

d
A double floating-point value for the 'direction' of a pixel.

m
A double floating-point value for the 'magnitude' of a pixel.

Return

A double floating-point value giving the cartesian x coordinate
for the pixel whose polar coordinates are [d,m].

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the image's center
point, and 'm' is the 'magnitude' of the distance from the center.
The fr2x() function takes a pair of polar coordinates as
arguments, and returns the cartesian x coordinate of the
corresponding pixel.

See Also

c2d, c2m, r2y

fr2y

Syntax

double fr2y(double d, double m)

Arguments

d
A double floating-point value for the 'direction' of a pixel.

m
A double floating-point value for the 'magnitude' of a pixel.

Return

A double floating-point value giving the cartesian y coordinate
for the pixel whose polar coordinates are [d,m].

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the image's center
point, and 'm' is the 'magnitude' of the distance from the center.
The fr2y() function takes a pair of polar coordinates as
arguments, and returns the cartesian y coordinate of the
corresponding pixel.

See Also

c2d, c2m, fr2x, r2y

FRAME

Syntax

ctl[n]: FRAME(Class Specific Properties), Other Properties

Description

This user control class draws a frame in the dialog window. By
default, this user control is not actionable.

Class Specific Properties

BLACK
Defines the border's color as black. (default)

ETCHED
Gives the border a 3D-look.

ETCHEDHORZ
Makes a single horizontal line with a 3D appearance.

ETCHEDVERT
Makes a single vertical line with a 3D appearance.

GRAY
Defines the border's color as gray.

NOTIFY
Makes the user control actionable and activates tooltip.

WHITE
Defines the border's color as white.

Other Properties

Val
Assigns a value to the frame, but only when it is disabled.
(default = 0)

Example

ctl[0]: FRAME
ctl[1]: FRAME(ETCHED), Val=45, Disabled
ctl[2]: FRAME(GRAY), Pos=(320,60), Size=(160,60)

Notes

Once the frame user control is actionable, its value definitions
are lost. The reason is that an action returns a specific value and
overwrites (once the mouse button is clicked over the user
control) the user control's value.

fread

Syntax

int fread(void* buffer, int size, int numitems, void* file)

Arguments

buffer
A pointer to the data buffer where the data read from the file
will be stored.

size
The size of the data blocks you want to read from the file (eg
if reading 32-bit integers, you might set this to 4 bytes).

numitems
The number of blocks of data you want to read from the file
(eg number of integers you want to read from the file in a
row).

file
The pointer/handle to the already opened file you want to
read from.

Return

Returns the number of items that were successfully read from
the file.

Description

Reads data from a previously opened file or stream.

Comments

The size and numitems parameters can be confusing to use. It's
often easier to set the size parameter to the number of bytes you
want to read from the file, and keep the numitems parameter set
to 1.

See Also

fopen, fread, fseek, fsetpos, fwrite, fclose

free

Syntax

free(void* buffer)

Arguments

buffer
A pointer to a previously allocated memory block.

Description

Frees the block of memory previously allocated specified by the
pointer buffer.

When specifying a NULL pointer, this function does nothing.

Example

%ffp

OnFilterStart: {

 // Allocate a string for
 // 255 characters.
 char* buffer_1 = malloc(255);

 free(buffer_1);
}

See Also

calloc, malloc, realloc

freeArray

Syntax

int freeArray (int nr)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

Return

Always returns a value of 1

Description

Lets you delete one of the 100 available arrays and free the
memory that is used for it.

Example

See allocArray

See Also

allocArray, getArray, putArray, getArrayDim, copyArray

freeHost

Syntax

int freeHost(int bufferID)

Arguments

bufferID
The ID of the memory buffer to be freed.

Return

Always returns true.

Description

Frees a memory block previously allocated by the host
application by using the allocHost function.

Example

int bufferID = allocHost(100);
if (bufferID == NULL) {
 Warn("Could not allocate memory");
}
else {
 char* memptr = lockHost(bufferID);
 sprintf(memptr, "Message goes here!");
 Info(memptr);
 freeHost(bufferID);
}

See Also

allocHost, lockHost

freeLib

Syntax

freeLib(void *handle)

Arguments

handle
Handle (as obtained from loadLib) to the DLL to be freed.

Description

Frees a DLL from memory.

Example

// This code loads the user32.dll
// DLL included with Windows and
// uses it to display a YES/NO
// Message Box.

int lib_user32, functionPointer, returnval;

// Load the DLL library
lib_user32 = loadLib("user32");
if (!lib_user32) msgBox(MB_OK, "Error", "DLL was not
loaded");

// Get the function in the DLL
functionPointer = getLibFn(lib_user32, "MessageBoxA");
if (!functionPointer) msgBox(MB_OK, "Error", "Function
wasn't loaded");

// Call the function
strcpy(str0, "The window text is here");
strcpy(str1, "Caption Text");
returnval = callLib(functionPointer, NULL, str0, str1,
MB_YESNO);

// Process return value
if (returnval == IDYES)
 msgBox(MB_OK, "Yes!", "Yes was clicked");
if (returnval == IDNO)
 msgBox(MB_OK, "No :(", "No was clicked");

// Free the library DLL
freeLib(lib_user32);

See Also

loadLib, getLibFn, callLib

fseek

Syntax

int fseek(FILE * file, long int offset, int origin)

Arguments

file
A pointer to the file that you are working with (obtained with
fopen).

offset
The offset (usually in bytes, for binary files) that you want to
seek to in the file, from the given origin.

origin
Designates whether to seek from the start (== 0), current
position (== 1), or end (== 2) of the file.

Return

Zero if the operation succeeded, non-zero otherwise.

Description

Seeks within a file to the given position.

See Also

fopen, fread, fseek, fsetpos, fwrite, fclose

fsetpos

Syntax

int fsetpos(FILE * file, fpos_t * position)

Arguments

file
A pointer to the file that you are working with (obtained with
fopen).

position
A 64-bit pointer to the new position in the file you want to
move to (obtained with fgetpos).

Return

Returns zero if the operation completed successfully, non-zero
otherwise.

Description

Changes the current read/write position in the file to the new
position, given by position. Not really intended for moving to
random positions in a file, unless you've already obtained
pointers to those positions previously using fgetpos. For random
file seeking, you should use fseek instead.

Note that position is actually a 64-bit pointer, which FilterMeister
doesn't yet support. If you need to use this, you should allocate
your own memory for the pointer, or use the fact that the k0 & k1
variables are allocated next to each other in memory.

Comments

Due to a bug in early versions of FilterMeister, fsetpos was
sometimes used in place of fseek for seeking. It isn't
recommended to do this, but if you need to use this workaround,
here is more information on using fsetpos instead of fseek from
the FMML FilterMeister Mailing List:

Where you have:

// fsetpos(SETTINGS_FILE, &mybyte);
// seek forward 37 bytes

you might like to try this instead:

k0 = 37;
k1 = 0;
fsetpos(SETTINGS_FILE, &k0);

Why are we doing things this way? It's because fsetpos
actually requires a 64-bit integer, but at the moment
FilterMeister doesn't support them. So instead, we abuse the
fact that the k0 and k1 variables are stored next to each
other, and "pretend" they make a 64-bit integer. By giving the
address of k0 (using &k0), the function will take the memory
address and read enough of memory to make the 64-bit
integer.

See Also

fopen, fread, fseek, fwrite, fclose

fsin

Syntax

double fsin(double x)

Arguments

x
An angle in radians, as a double-precision floating point
value

Return

Sine of radian angle x, as a double-precision floating point value

Description

Calculates the sine of the given radian angle x.

Example

%fml

float result;
float PI = 3.14159275;
float degrees = 45.0;
float radians;

radians = degrees * PI / 180;
result = fsin(radians);
printf("Sine of %lf degrees (%lf radians) is %lf",
degrees, radians, result);

%%EOF

fwrite

Syntax

int fwrite(void* buffer, int size, int numitems, void* file)

Arguments

buffer
A pointer to the data buffer where the data read from the file
will be stored.

size
The size of the data blocks you want to write out (eg if
writing 32-bit integers, you might set this to 4 bytes).

numitems
The number of blocks of data you want to write to the file (eg
number of integers you want to write to the file in a row).

file
The pointer/handle to the already opened file you want to
write to.

Return

Returns the number of items that were successfully written to
the file.

Description

Writes data to a previously opened file or stream.

Comments

The size and numitems parameters can be confusing - it's often
easier to set the size parameter to the number of bytes you want

to write to the file, and keep the numitems parameter set to 1.

See Also

fopen, fread, fseek, fsetpos, fclose

gamma

Syntax

int gamma(int i)

Arguments

i
The intensity to be corrected. i must be higher or equal to 0
and lower or equal to 255.

Return

The gamma-corrected value of i.

Description

Allows the user to efficiently calculate gamma correction. To be
used in conjunction with the setGamma function.

Example

int val;

setGamma(1.8);

for (x = x_start; x < x_end; x++) {
 for (y = y_start; y < y_end; y++) {
 for (z = 0; z < 3; z++) {

 val = gamma(src(x, y, z));
 pset(x, y, z, val);

 }
 }
}

See Also

setGamma

get

Syntax

int get(int item)

Arguments

item
Numeric identifier of an item in the buffer.

Return

The value of the buffered item requested.

Description

FilterMeister has a small internal buffer of N_CELLS integer items
which can be accessed by means of the get and put functions.
They provide the simplest means for storing integer data since
they require no variable to be declared.

Currently N_CELLS is 1024. It may increase in future releases of
FilterMeister, but will never decrease. N_CELLS will always be a
power of 2.

By default, the items in the buffer are initialized to zero at the
end of the executing code block. Calling the cell_preserve(1)
function changes this behavior so the buffer values are stored
between separate handlers, making them ideal for transporting
information between them.

The get function takes an integer argument in the range of 0 up
to and including (N_CELLS - 1) and returns the value stored in

that position in the buffer.

Example

%ffp

OnFilterStart:
{
 put(10, 0);
 Info("The value of buffer position 0 is %d", get(0));
}

See Also

put, cell_preserve

getAppTheme

Syntax

int getAppTheme(void)

Return

Returns true if the hosting application has enabled Windows XP /
Vista style theming, false otherwise.

Description

Checks if the hosting application has enabled Windows themes.

Examples

%fml
OnFilterStart: {
 if (getAppTheme()) {
 printf("Host application is themed.");
 }
 else printf("Host application does not support
themes.");
 return false;
}

See Also

setCtlTheme

getArray

Syntax

int getArray (int nr, int x, int y, int z)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

Return

Returns the value that was stored at the specified coordinates in
the array. If the specified coordinates lie outside the array, a zero
value will be returned.

Description

It lets you read a value from an array.

Example

See allocArray

See Also

allocArray, freeArray, putArray, getArrayDim, copyArray

getArrayDim

Syntax

int getArrayDim (int nr, int dim)

Arguments

nr
Number of the Array. Values from 0 to 99 are acccepted.

dim
Determines which dimensions will be queried. Set it to 0 for
X, 1 for Y and 2 for Z. See allocArray. New in FM 1.0 Beta 9d:
Set this argument to -1 to return the base address of the
Array; -2 to return the optional Buffer ID; -3 to return the
total Array size in bytes; -4 to return the number of bytes per
Array element; or -5 to return the padding size of the Array.

Return

Returns the amount of cells of one of the three dimensions of an
Array (or various other information about the Array), depending
on the dim parameter.

Description

Usually you know the sizes of the three dimensions of your
Array(s). But in some cases it is convenient to use this function to
check it again. For other information about the Array, such as the
base address or Buffer ID, this API may be the only way to obtain
the desired information.

See Also

allocArray, allocArrayPad, freeArray, getArray, putArray,
copyArray

getArrayString

Syntax

int getArrayString(int nr, int index)

Arguments

nr
Number of the Array. Values from 0 to 99 are accepted.

index
The index number of the item in the array you want to
retrieve

Return

Returns a pointer to the string if it exists, or a pointer to the
string "Not Available" otherwise.

Description

Retrieves a string stored in the built-in Arrays.

Comment

Note that you must allocate space for the array first using the
allocArray function, otherwise these functions will fail.

Example

%ffp

ctl(0): combobox, "Harry\nJim\nSally", val=0,
action=preview, size=(*,200)

OnFilterStart:{

 // Allocate Array for storing 3 strings of max. 256
bytes length
 allocArray(0,3,256,0,1);

 // Store the Strings
 putArrayString (0,0, "Hello, Harry!");
 putArrayString (0,1, "Hello, Jimmy.");
 putArrayString (0,2, "Hello, Sally, old girl!");

 // Display
 Info ("%s", getArrayString(0,ctl(0)));

 freeArray(0);

 return false;
}

See Also

allocArray, putArrayString, freeArray

getAsyncKeyState

Syntax

int fm_getAsyncKeyState (int vkey)

Arguments

vkey
Virtual Key Constant. For more information see the [MSDN
Virtual Key Codes page]

Return

The return value specifies whether the key was pressed since the
last call to GetAsyncKeyState, and whether the key is currently
up or down. If the most significant bit is set, the key is down, and
if the least significant bit is set, the key was pressed after the
previous call to GetAsyncKeyState.

Description

Determines whether a key is up or down at the time the function
is called, and whether the key was pressed after a previous call to
getAsyncKeyState.

Example

%ffp

ctl[10]: PUSHBUTTON, Text="Hold down the CTRL key and
click me", pos=(250,50), size=(150,15)

OnCtl(n):

https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes

{
 int r;

 if (n==10 && e == FME_CLICKED) {

 if (getAsyncKeyState(VK_CONTROL) < 0)
 Info ("The Control Key was just pressed.");
 else
 ErrorOk ("You didn't press the Control Key.");
 }

 return false;
}

See Also

getAsyncKeyStateF, VK codes

getAsyncKeyStateF

Syntax

int fm_getAsyncKeyStateF (int vkey)

Arguments

vkey
Virtual Key Constant. For more information see the [MSDN
Virtual Key Codes page]

Return

The return value specifies whether the key was pressed since the
last call to a member of the getAsyncKeyState family of functions,
and whether the key is currently up or down. If the most
significant bit is set, the key is down, and if the least significant
bit is set, the key was pressed after the previous call to
GetAsyncKeyState.

getAsyncKeyStateF also checks if the window is currently active.
If not, all keys will be seen as "up" (that is; not pressed).

Description

Determines whether a key is up or down at the time the function
is called, and whether the key was pressed after a previous call to
getAsyncKeyState.

Example

%ffp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/VirtualKeyCodes.asp

ctl(10): PUSHBUTTON, Text="Hold down the CTRL key and
click me", Pos=(250, 50), Size=(150, 15)

OnCtl(n):
{
 int r;

 if (n == 10 && e == FME_CLICKED) {

 if (getAsyncKeyStateF(VK_CONTROL) < 0)
 Info ("The Control Key was just pressed.");
 else
 ErrorOk ("You didn't press the Control Key.");

 }

 return false;
}

See Also

FME_KEYDOWN, FME_KEYUP, getAsyncKeyState, VK codes

getc

Syntax

int getc(int * fileptr)

Arguments

fileptr
Pointer to a file opened using fopen.

Return

The byte (unsigned) read from the file if successful, otherwise -1.

Description

Reads a single byte from the file referenced by fileptr.

This function is equivalent to fgetc but can be used in ways that
can corrupt fileptr. It is advised to always use fgetc instead of
this function.

See Also

fopen, putc, fgetc

getCtlClass

Syntax

int getCtlClass(int n)

Return

Returns the class of control number n. If the class returned is 0
(or constant CC_UNUSED) it does not exists (not created or
deleted).

One of the following will be returned:

Constant name Value
CC_ANIMATION 24
CC_BITMAP 20
CC_CHECKBOX 7
CC_COMBOBOX 12
CC_EDIT 15
CC_FRAME 17
CC_GROUPBOX 9
CC_ICON 21
CC_IMAGE 19
CC_LISTBOX 11
CC_OWNERDRAW 10
CC_PREVIEW 25
CC_PROGRESSBAR 14
CC_PUSHBUTTON 6
CC_RADIOBUTTON 8

CC_RECT 18
CC_SCROLLBAR 2
CC_SLIDER 13
CC_SPINNER 4
CC_STANDARD 1
CC_STATICTEXT 16
CC_TAB 27
CC_TOOLTIP 23
CC_TRACKBAR 3
CC_UNUSED 0
CC_UPDOWN 5
CC_ZOOM 26

Please note that not all of the above constants and control types
are available yet.

getCtlColor

Syntax

int getCtlColor(int index)

Arguments

index
The index of the control that you want to get the color of.

Return

The current color of control c as an RGB triple.

Description

getCtlColor returns the current color of control c, as an RGB
triple.

See Also

getCtlVal, setCtlColor

getCtlCoord

Syntax

int getCtlCoord(int index, int type)

Arguments

index
The index of the control that you want to get the mouse
coordinates for.

type
0 = Gets the x coordinate of the mouse pointer relative to
this control (in pixels)

 1 = Gets the y coordinate of the mouse pointer relative to this
control (in pixels)

Return

Returns the x or y coordinate of the mouse cursor relative to the
top left corner of the specified control, in pixels.

Returns -1 if the mouse pointer is outside the bounds of the
control's window, or if there is any other error.

Description

Allows you to determine the coordinates (in pixels) of the current
mouse cursor position over a control, for example when a button
is clicked.

If index is equal to CTL_PREVIEW, the coordinates over the
(primary) preview display are returned, adjusted relative to the
top left corner of the proxy image (0,0). To get a coordinate

relative to the full original image, multiply the proxy coordinate
by scaleFactor (e.g., multiply by 4 at 25% zoom).

For other controls, the coordinates are relative to the top left
corner of the control (e.g., for an OWNERDRAW control).

Example

// returns the y mouse coordinate
// relative to user control 10
y = getCtlCoord(10, 1);

Comments

getCtlCoord(CTL_PREVIEW, 0) is equivalent to
getPreviewCoordX().
getCtlCoord(CTL_PREVIEW, 1) is equivalent to
getPreviewCoordY().

See Also

getPreviewCoordX, getPreviewCoordY, getCtlPos

getCtlDivisor

Syntax

int getCtlDivisor(int n)

Arguments

n
The index number of the user control whose divisor you
want to retrieve

Return

The divisor value assigned to the user control.

Description

This function gets the divisor value for STANDARD and
SCROLLBAR controls.

Example

int d;
d = getCtlDivisor(4);
d = getCtlDivisor(5);

See Also

setCtlDivisor

getCtlItemCount

Syntax

int getCtlItemCount (int n)

Arguments

n
The index of the control for which you want to obtain the
item count.

Return

Returns 0 if not a valid control index. Returns the number of list
items in a LISTBOX or COMBOBOX control. Returns the number
of tabs in a TAB control. Returns -1 for any other control.

Description

Usually you know the number of items or tabs in a control, but
this function can be useful for helping you keep track of this
information.

Example

// Get item count for list box LB1.
nItems = getCtlItemCount(nLB1);

See Also

getCtlItemText, deleteCtlItem, deleteCtlItems, getCtlClass

getCtlItemText

Syntax

int getCtlItemText(int n, int item, char* str)

Arguments

n
The number of the control

item
The number of the item to retrieve

str
Pointer to a string where the result will be stored

Return

Returns false if the control number is out of range or not in use,
or if LB_ERR was returned by the internal Win32 SendMessage
calls. Returns true otherwise.

Description

Gets the text of a COMBOBOX, LISTBOX or TAB control item.

Comment

This function only works with LISTBOX, COMBOBOX and TAB
controls. It will currently return true if used with other control
types, even though the function didn't succeed.

Example

%fml

ctl[0]: COMBOBOX(VSCROLL),
 Text="Harry\nLarry\nBarry\n"
 "Gary\nCarrie\nSally",
 Val=0, Size=(*,50)
ctl[6]: STATICTEXT, Text=""

OnCtl(n): {

 // Display selected text value
 if (n == 0) {
 getCtlItemText(0, ctl(0), str0);
 setCtlText(6, str0);
 }

 return true;
}

See Also

deleteCtlItem, deleteCtlItems

getCtlPos

Syntax

int getCtlPos(int index, int type)

Arguments

index
The index of the control that you want to get the position or
size of.

type
0 = The horizontal co-ordinate of the user control's position
(in DBUs)

 1 = The vertical co-ordinate of the user control's position (in
DBUs)

 2 = The width of the user control (in DBUs)
 3 = The height of the user control (in DBUs)

Return

The horizontal/vertical coordinates or the width/height of the
control, depending on the value of the type parameter.

Description

Gets the position and width of a user control.

Don't forget that all measurements are set in DBUs (dialog box
units).

Example

// returns the width of user control 10
w = getCtlPos(10, 2);

See Also

setCtlPos, getCtlColor, getCtlVal

getCtlRange

Syntax

int getCtlRange(int n, int type)

Arguments

n
The number of the control whose range you wish to get.

type
0 = The minimum value of the range of user control n.

 1 = The maximum value of the range of user control n.

Return

Either the minimum or maximum of the user control range as an
integer.

Description

This function retrieves either the minimum or maximum value of
the range of the user control with the index n.

Example

// Retrieve maximum range of
// user control number 0.
x = getCtlRange(0, 1);

// Retrieve minimum range of
// user control number 23.
x = getCtlRange(23, 0);

See Also

setCtlRange, setCtlDivisor

getCtlTab

Syntax

int getCtlTab(int n, int t)

Arguments

n
The number of the user control you want to locate

t
Set to 0 to retrieve the number of the TAB control the user
control is assigned to, or to 1 to retrieve the tabsheet item
number the control is assigned to.

Return

If t is 0, the function returns the tab sheet the control is on. If t is
non-zero, it returns the tabsheet number of the tab the control
has been assigned to. Returns -1 if the user control number is out
of range.

Description

Returns the tab control or tab sheet that a user control has been
assigned to.

Comment

Due to the design of this function, the tab control index number
should be 1 or higher. If the tab is control #0, you won't be able
to use getCtlTab to retrieve the sheet number the control is on.

Example

%fml
ctl[1]: TAB, Text="page0\npage1", Pos=(250, 5), Size=(200,
100)
ctl[2]: STANDARD, Text="Slider", Pos=(280,*)
ctl[8]: PUSHBUTTON, Text="Move slider to other tab sheet",
Pos=(250, 120), Size=(150,*)

OnCtl(n): {
 if (n==8 && e==FME_CLICKED) {
 // If not already on page1,
 // move slider to page1
 if (getCtlTab(2, 1) != 1) {
 setCtlTab(2, 1, 1);
 }
 else {
 // Move back to page0
 setCtlTab(2, 1, 0);
 }
 }
 return false;
}

See Also

setCtlTab, TAB

getCtlText

Syntax

int getCtlText(int ctlnum)

Arguments

ctlnum
The number of the control whose text you would like to
retrieve.

Return

Returns a pointer (actually a char*) to a string containing the text
property of the given user control.

Description

Gets the text label / property of a user control with the index
ctlnum. Note that not all user controls support text strings.

Example

strcpy(str1, getCtlText(CTL_OK));
msgBox(MB_OK, "The text label of CTL_OK is", str1);

See Also

getCtlVal, setCtlText

getCtlVal

Syntax

int getCtlVal(int n)

Arguments

n
The index of the user control you want the value of.

Return

The value associated with the user control.

Description

This function retrieves the current value of the user control with
the index n. Be aware of the range the user control can return.
For example, a push button can only return the values 0 and 1.

Example

R,G,B: c+ctl(0) //adds the current user control value to
the current pixel color

See Also

ctl

getcwd

Syntax

string getcwd(string buffer, int maxlen)

Arguments

buffer
A pointer to a string (character buffer) where the result
should be stored.

maxlen
The maximum length of the path that can be stored in the
given character buffer.

Return

Returns a string (pointer to a character buffer) if successful,
NULL if there was an error.

Description

Returns the current working directory.

See Also

mkdir, chdir, rmdir

getDialogHeight

Syntax

getDialogHeight()

Description

Gets the current height of the dialog in vertical DBUs (VDBU).

Example

Info("DialogSize: %d x %d", getDialogWidth(),
getDialogHeight());

See Also

getDialogWidth, setDialogMinMax, setDialogPos,
VDBUsToPixels

getDialogPos

Syntax

int getDialogPos(int w, int t)

Arguments

w
A switch to choose which value to return: 0 for the left / x
co-ordinate, 1 for the top / y co-ordinate, 2 for the window
width and 3 for the window height.

t
A Boolean flag indicating whether x and y are absolute screen
coordinates (t == true), or whether they are relative to the
client area (t == false).

Return

The requested window dimension as an integer.

Description

Gets the position and size of the filter dialog window. If t is true,
x and y are absolute screen coordinates; otherwise, x and y are
relative to the upper-left corner of the client area in the host
application's main window.

All measurements are in dialog box units (DBUs).

Examples

ctl[0]: PUSHBUTTON, "Where are we now?", Size=(90,*)
ctl[8]: STATICTEXT, "", Size=(140, *)

OnCtl(n): {
 if (n==0) {
 int leftx, topy, width, height;
 leftx = getDialogPos(0, 0);
 topy = getDialogPos(1, 0);
 width = getDialogPos(2, 0);
 height = getDialogPos(3, 0);
 sprintf(str1, "X: %d, Y: %d, Width: %d, Height: %d",
leftx, topy, width, height);
 setCtlText(8, str1);
 }
 return true;
}

See Also

getDialogWidth, getDialogHeight, setDialogPos

getDialogWidth

Syntax

getDialogWidth()

Description

Gets the current width of the dialog in horizontal DBUs (HDBU).

Example

Info("DialogSize: %d x %d", getDialogWidth(),
getDialogHeight());

See Also

getDialogHeight, setDialogMinMax, setDialogPos,
HDBUsToPixels

getDisplaySettings

Syntax

int getDisplaySettings(int s)

Arguments

s
Set to 0 for the bit depth, to 1 for the horizontal resolution in
pixels, to 2 for the vertical resolution in pixels and to 3 for
the refresh rate in Hz of the screen.

Return

Returns a value according to the used s parameter.

Description

Lets you know the bit depth, resolution and refresh rate of the
screen. Especially the refresh rate is useful if you want to display
an animation in the preview with the help of setTimerEvent and
updatePreview. Because if you draw more frames per second
than the refresh rate is able to display, your animation will flicker.

Example

%ffp

ForEveryTile:
{

 Info (" %d bit \n %d x %d pixel \n %d Hz",
getDisplaySettings(0), getDisplaySettings(1),

getDisplaySettings(2), getDisplaySettings(3));

 return true;
}

See Also

setTimerEvent, updatePreview

getImageTitle

Syntax

bool getImageTitle(char text[256])

Arguments

text
A string to contain the image title text. Must be at least 256
chars long.

Return

Returns true if successful, else false.

Description

This function retrieves the image title text property.

Comment

Note that not all graphics program implement this feature
reliably. Adobe Photoshop® is the only program where you
should assume this feature is available.

Example

getImageTitle(str0);

getLibFn

Syntax

int getLibFn(void *dllHandle, char *functionName)

Arguments

dllHandle
A handle (obtained with loadLib) to the DLL the function is
in.

functionName
The name of the function to get a pointer to.

Return

Returns a pointer to the DLL function.

Description

Locates a specific function in a DLL, allowing you to call the
function from within FilterMeister by using callLib.

Example

// This code loads the user32.dll
// DLL included with Windows and
// uses it to display a YES/NO
// Message Box.

int lib_user32, functionPointer, returnval;

// Load the DLL library
lib_user32 = loadLib("user32");

if (!lib_user32) msgBox(MB_OK, "Error", "DLL was not
loaded");

// Get the function in the DLL
functionPointer = getLibFn(lib_user32, "MessageBoxA");
if (!functionPointer) msgBox(MB_OK, "Error", "Function
wasn't loaded");

// Call the function
strcpy(str0, "The window text is here");
strcpy(str1, "Caption Text");
returnval = callLib(functionPointer, NULL, str0, str1,
MB_YESNO);

// Process return value
if (returnval == IDYES)
 msgBox(MB_OK, "Yes!", "Yes was clicked");
if (returnval == IDNO)
 msgBox(MB_OK, "No :(", "No was clicked");

// Free the library DLL
freeLib(lib_user32);

See Also

loadLib, callLib, freeLib

getLocaleInfo

Syntax

int getLocaleInfo (int locale, int type, char * buffer, int
buffer_size)

Arguments

locale
The locale identifier LCID of the locale or one of the
constants LOCALE_SYSTEM_DEFAULT or
LOCALE_USER_DEFAULT to specify either the system or
user's default locale.

type
An identifier for the type of information required. See below
for a list of constants for this argument.

buffer
Pointer to a character array (string) used to store the
requested information.

buffer_size
The maximum size of the buffer, this value should be the size
of the allocated string or 255 in case you're using one of the
predeclared strings (str0 up to str9).

Return

A value indicating the success (6) or a possible error which
occurred:

0 = Insufficient buffer
5 = Invalid type
6 = Success
7 = Invalid locale identifier

Type constants

The following is a list constants for all existing types of locale
info.

LOCALE_ILANGUAGE
Language identifier indicating the language. The maximum
number of characters allowed for this string is 5.

LOCALE_SLANGUAGE
Full localized name of the language.

LOCALE_SENGLANGUAGE
Full English name of the language from the International
Organization for Standardization (ISO) Standard 639. This is
always restricted to characters mappable into the ASCII 127-
character subset.

LOCALE_SABBREVLANGNAME
Abbreviated name of the language, created by taking the 2-
letter language abbreviation from the ISO Standard 639 and
adding a third letter, as appropriate, to indicate the
sublanguage.

LOCALE_SNATIVELANGNAME
Native name of the language.

LOCALE_ICOUNTRY
Country code, based on international phone codes, also
referred to as IBM country codes. The maximum number of
characters allowed for this string is 6.

LOCALE_SCOUNTRY
Full localized name of the country.

LOCALE_SENGCOUNTRY
Full English name of the country. This is always restricted to
characters mappable into the ASCII 127-character subset.

LOCALE_SABBREVCTRYNAME
Abbreviated name of the country from the ISO Standard
3166.

LOCALE_SNATIVECTRYNAME
Native name of the country.

LOCALE_IDEFAULTLANGUAGE
Language identifier for the principal language spoken in this
locale. This is provided so that partially specified locales can
be completed with default values. The maximum number of
characters allowed for this string is 5.

LOCALE_IDEFAULTCOUNTRY
Country code for the principal country in this locale. This is
provided so that partially specified locales can be completed
with default values. The maximum number of characters
allowed for this string is 6.

LOCALE_IDEFAULTCODEPAGE
Original equipment manufacturer (OEM) code page
associated with the country. The maximum number of
characters allowed for this string is 6.

LOCALE_SLIST
Character(s) used to separate list items. For example, a
comma is used in many locales.

LOCALE_IMEASURE
System of measurement. This value is 0 if the metric system
(Syst©me International d'Unit©s, or S.I.) is used and 1 if the
U.S. system is used. The maximum number of characters
allowed for this string is 2.

LOCALE_SDECIMAL
Character(s) used as the decimal separator.

LOCALE_STHOUSAND
Character(s) used to separate groups of digits to the left of
the decimal.

LOCALE_SGROUPING
Sizes for each group of digits to the left of the decimal. An
explicit size is needed for each group; sizes are separated by
semicolons. If the last value is zero, the preceding value is
repeated. To group thousands, specify 3;0, for example.

LOCALE_IDIGITS
Number of fractional digits. The maximum number of
characters allowed for this string is 3.

LOCALE_ILZERO

Specifier for leading zeros in decimal fields. The maximum
number of characters allowed for this string is 2. The
specifier can be one of the following values: 0 = No leading
zeros, 1 = Leading zeros

LOCALE_SNATIVEDIGITS
Native equivalents to ASCII 0 through 9.

LOCALE_SCURRENCY
String used as the local monetary symbol.

LOCALE_SINTLSYMBOL
Three characters of the international monetary symbol
specified in ISO 4217, "Codes for the Representation of
Currencies and Funds," followed by the character separating
this string from the amount.

LOCALE_SMONDECIMALSEP
Character(s) used as the monetary decimal separator.

LOCALE_SMONTHOUSANDSEP
Character(s) used as the monetary separator between groups
of digits to the left of the decimal.

LOCALE_SMONGROUPING
Sizes for each group of monetary digits to the left of the
decimal. An explicit size is needed for each group; sizes are
separated by semicolons. If the last value is zero, the
preceding value is repeated. To group thousands, specify 3;0,
for example.

LOCALE_ICURRDIGITS
Number of fractional digits for the local monetary format.
The maximum number of characters allowed for this string is
3.

LOCALE_IINTLCURRDIGITS
Number of fractional digits for the international monetary
format. The maximum number of characters allowed for this
string is 3.

LOCALE_ICURRENCY
Positive currency mode. The maximum number of characters
allowed for this string is 2. The mode can be one of the
following values: 0 = Prefix, no separation, 1 = Suffix, no

separation, 2 = Prefix, 1-char. separation, 3 = Suffix, 1-char.
separation

LOCALE_INEGCURR
Negative currency mode. The maximum number of
characters allowed for this string is 3. The mode can be one
of the following values (right side is an example): 0 = ($1.1), 1 =
-$1.1, 2 = $-1.1, 3 = $1.1-, 4 = (1.1$), 5 = -1.1$, 6 = 1.1-$, 7 = 1.1$-, 8
= -1.1 $ (space before $), 9 = -$ 1.1 (space after $), 10 = 1.1 $-
(space before $), 11 = $ 1.1- (space after $), 12 = $ -1.1 (space
after $), 13 = 1.1- $ (space before $), 14 = ($ 1.1) (space after $),
15 = (1.1 $) (space before $)

LOCALE_SDATE
Character(s) for the date separator.

LOCALE_STIME
Character(s) for the time separator.

LOCALE_STIMEFORMAT
Time formatting strings for this locale.

LOCALE_SSHORTDATE
Short date formatting string for this locale.

LOCALE_SLONGDATE
Long date formatting string for this locale.

LOCALE_IDATE
Short date format-ordering specifier. The maximum number
of characters allowed for this string is 2. The specifier can be
one of the following values: 0 = Month-Day-Year, 1 = Day-
Month-Year, 2 = Year-Month-Day

LOCALE_ILDATE
Long date format-ordering specifier. The maximum number
of characters allowed for this string is 2. The specifier can be
one of the following values: 0 = Month-Day-Year, 1 = Day-
Month-Year, 2 = Year-Month-Day

LOCALE_ITIME
Time format specifier. The maximum number of characters
allowed for this string is 2. The specifier can be one of the
following values: 0 = AM / PM 12-hour format, 1 = 24-hour
format

LOCALE_ICENTURY
Specifier for full 4-digit century. The maximum number of
characters allowed for this string is 2. The specifier can be
one of the following values: 0 = Abbreviated 2-digit century, 1
= Full 4-digit century

LOCALE_ITLZERO
Specifier for leading zeros in time fields. The maximum
number of characters allowed for this string is 2. The
specifier can be one of the following values: 0 = No leading
zeros for hours, 1 = Leading zeros for hours

LOCALE_IDAYLZERO
Specifier for leading zeros in day fields. The maximum
number of characters allowed for this string is 2. The
specifier can be one of the following values: 0 = No leading
zeros for days, 1 = Leading zeros for days

LOCALE_IMONLZERO
Specifier for leading zeros in month fields. The maximum
number of characters allowed for this string is 2. The
specifier can be one of the following values: 0 = No leading
zeros for months, 1 = Leading zeros for months

LOCALE_S1159
String for the AM designator.

LOCALE_S2359
String for the PM designator.

LOCALE_SDAYNAME1
Native long name for Monday.

LOCALE_SDAYNAME2
Native long name for Tuesday.

LOCALE_SDAYNAME3
Native long name for Wednesday.

LOCALE_SDAYNAME4
Native long name for Thursday.

LOCALE_SDAYNAME5
Native long name for Friday.

LOCALE_SDAYNAME6
Native long name for Saturday.

LOCALE_SDAYNAME7
Native long name for Sunday.

LOCALE_SABBREVDAYNAME1
Native abbreviated name for Monday.

LOCALE_SABBREVDAYNAME2
Native abbreviated name for Tuesday.

LOCALE_SABBREVDAYNAME3
Native abbreviated name for Wednesday.

LOCALE_SABBREVDAYNAME4
Native abbreviated name for Thursday.

LOCALE_SABBREVDAYNAME5
Native abbreviated name for Friday.

LOCALE_SABBREVDAYNAME6
Native abbreviated name for Saturday.

LOCALE_SABBREVDAYNAME7
Native abbreviated name for Sunday.

LOCALE_SMONTHNAME1
Native long name for January.

LOCALE_SMONTHNAME2
Native long name for February.

LOCALE_SMONTHNAME3
Native long name for March.

LOCALE_SMONTHNAME4
Native long name for April.

LOCALE_SMONTHNAME5
Native long name for May.

LOCALE_SMONTHNAME6
Native long name for June.

LOCALE_SMONTHNAME7
Native long name for July.

LOCALE_SMONTHNAME8
Native long name for August.

LOCALE_SMONTHNAME9
Native long name for September.

LOCALE_SMONTHNAME10
Native long name for October.

LOCALE_SMONTHNAME11
Native long name for November.

LOCALE_SMONTHNAME12
Native long name for December.

LOCALE_SABBREVMONTHNAME1
Native abbreviated name for January.

LOCALE_SABBREVMONTHNAME2
Native abbreviated name for February.

LOCALE_SABBREVMONTHNAME3
Native abbreviated name for March.

LOCALE_SABBREVMONTHNAME4
Native abbreviated name for April.

LOCALE_SABBREVMONTHNAME5
Native abbreviated name for May.

LOCALE_SABBREVMONTHNAME6
Native abbreviated name for June.

LOCALE_SABBREVMONTHNAME7
Native abbreviated name for July.

LOCALE_SABBREVMONTHNAME8
Native abbreviated name for August.

LOCALE_SABBREVMONTHNAME9
Native abbreviated name for September.

LOCALE_SABBREVMONTHNAME10
Native abbreviated name for October.

LOCALE_SABBREVMONTHNAME11
Native abbreviated name for November.

LOCALE_SABBREVMONTHNAME12
Native abbreviated name for December.

LOCALE_SPOSITIVESIGN
String value for the positive sign.

LOCALE_SNEGATIVESIGN
String value for the negative sign.

LOCALE_IPOSSIGNPOSN
Formatting index for positive values. The maximum number
of characters allowed for this string is 2. The index can be
one of the following values: 0 = Parentheses surround the

amount and the monetary symbol, 1 = The sign string
precedes the amount and the monetary symbol, 2 = The sign
string succeeds the amount and the monetary symbol, 3 =
The sign string immediately precedes the monetary symbol,
4 = The sign string immediately succeeds the monetary
symbol.

LOCALE_INEGSIGNPOSN
Formatting index for negative values. This index uses the
same values as LOCALE_IPOSSIGNPOSN. The maximum
number of characters allowed for this string is 2.

LOCALE_IPOSSYMPRECEDES
Position of monetary symbol in a positive monetary value.
This value is 1 if the monetary symbol precedes the positive
amount, 0 if it follows it. The maximum number of characters
allowed for this string is 2.

LOCALE_IPOSSEPBYSPACE
Separation of monetary symbol in a positive monetary value.
This value is 1 if the monetary symbol is separated by a space
from a positive amount, 0 if it is not. The maximum number
of characters allowed for this string is 2.

LOCALE_INEGSYMPRECEDES
Position of monetary symbol in a negative monetary value.
This value is 1 if the monetary symbol precedes the negative
amount, 0 if it follows it. The maximum number of characters
allowed for this string is 2.

LOCALE_INEGSEPBYSPACE
Separation of monetary symbol in a negative monetary value.
This value is 1 if the monetary symbol is separated by a space
from the negative amount, 0 if it is not. The maximum
number of characters allowed for this string is 2.

LOCALE_NOUSEROVERRIDE
This constant may be OR'ed with any other LCTYPE constant
in a call to the GetLocaleInfo function. This always causes the
function to bypass any user overrides, and return the system
default value for the other LCTYPE specified in the function
call, based on the given LCID.

getPreviewCursor

Syntax

int getPreviewCursor(void)

Return

The integer resource number of the cursor being used.

Description

Retrieves the pointer icon resource being used when the mouse
is over the preview image. Typical values are

103 : Default Windows pointer (hand)
IDC_ARROW (32512) : Arrow pointer
IDC_IBEAM (32513) : I beam (text cursor)
IDC_WAIT (32514) : Busy pointer
IDC_CROSS (32515) : Cross
IDC_UPARROW (32516) : Up arrow
IDC_SIZE (32640) : Size pointer
IDC_HELP (32641) : pointer with question mark
IDC_SIZENWSE (32642) : NWSE diagonal arrow
IDC_SIZENESW (32643) : NESW diagonal arrow
IDC_SIZEWE (32644) : WE arrow
IDC_SIZENS (32645) : NS arrow
IDC_SIZEALL (32646) : Size all crossed-arrows
IDC_NO (32648) : NO pointer
IDC_APPSTARTING (32650) : Application Starting pointer
IDC_ICON (32651) : ? custom cursor?

Comments

Bear in mind that when using these cursors, cursors may differ
for different machines depending on the user's cursor
preferences and any themes running.

Example

OnFilterStart: {
 // Displays preview cursor icon
 // resource number. This will
 // be 103 by default for the
 // hand icon
 Info("Preview icon resource number: %d",
getPreviewCursor());
 return false;
}

See Also

setPreviewCursor

getPreviewCoordX

Syntax

int getPreviewCoordX (void)

Return

Returns the x coordinate in the image above which the mouse
pointer is placed.

Description

Together with getPreviewCoordY you can use it to get the
coordinates of the mouse pointer above the image in the preview.
The returned coordinates are already converted to image
coordinates. But it is recommended to multiply the returned
value with scaleFactor to get a coordinate relative to the full
image and not just a coordinate relative to the e.g. 33% zoomed
version of the image.

Example

%ffp

ctl(0): STATICTEXT, "Please right click on the preview to
set a cross.", Size=(100,20)

OnCtl(n):
{

 if (n == CTL_PREVIEW && e == FME_RIGHTCLICKED_DOWN) {
 j0 = getPreviewCoordX() * scaleFactor;
 j1 = getPreviewCoordY() * scaleFactor;

 doAction(CA_PREVIEW);
 }

 return false;
}

ForEveryTile:{

 int g,h,z, color;
 int PreviewX = j0/scaleFactor;
 int PreviewY = j1/scaleFactor;

 // Calculate color of the cross
 color = (src(PreviewX, PreviewY, 0) + src(PreviewX,
PreviewY, 1)+ src(PreviewX, PreviewY, 2)) / 3;
 if (color > 128 && color < 196) color=0;
 if (color > 64 && color < 128) color=255;
 else color = 255 - color;

 // Display Cross
 if (doingProxy){
 for (z = 0; z < Z; z++){
 for (g = -7; g < 8; g++)
 if (g < -1 || g > 1) pset(PreviewX + g, PreviewY,
z, color);
 for (h = -7; h < 8; h++)
 if (h < -1 || h > 1) pset(PreviewX, PreviewY + h,
z, color);
 }
 }

 return true;
}

See Also

getPreviewCoordY, scaleFactor

getPreviewCoordY

Syntax

int getPreviewCoordY (void)

Return

Returns the y coordinate in the image above which the mouse
pointer is placed.

Description

Together with getPreviewCoordX you can use it to get the
coordinates of the mouse pointer above the image in the preview.
The returned coordinates are already converted to image
coordinates. But it is recommended to multiply the returned
value with scaleFactor to get a coordinate relative to the full
image and not just a coordinate relative to the e.g. 33% zoomed
version of the image.

Example

%ffp

ctl(0): STATICTEXT, "Please right click on the preview to
set a cross.", Size=(100,20)

OnCtl(n):
{

 if (n == CTL_PREVIEW && e == FME_RIGHTCLICKED_DOWN) {
 j0 = getPreviewCoordX() * scaleFactor;
 j1 = getPreviewCoordY() * scaleFactor;

 doAction(CA_PREVIEW);
 }

 return false;
}

ForEveryTile:{

 int g, h, z, color;
 int PreviewX = j0 / scaleFactor;
 int PreviewY = j1 / scaleFactor;

 // Calculate color of the cross
 color = (src(PreviewX, PreviewY, 0) + src(PreviewX,
PreviewY, 1) + src(PreviewX, PreviewY, 2))/3;
 if (color > 128 && color < 196) color = 0;
 if (color > 64 && color < 128) color = 255;
 else color = 255-color;

 // Display Cross
 if (doingProxy){
 for (z = 0; z < Z; z++){
 for (g = -7; g < 8; g++)
 if (g < -1 || g > 1) pset(PreviewX + g, PreviewY,
z, color);
 for (h = -7; h < 8; h++)
 if (h < -1 || h > 1) pset(PreviewX, PreviewY + h,
z, color);
 }
 }

 return true;
}

See Also

getPreviewCoordX, scaleFactor

getRegPath

Syntax

int getRegPath(char * path, int length)

Arguments

path
A pointer to the string which will contain the path.

length
Maximum length of the path string.

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid

ERROR_CANTOPEN registry key could not be
opened

ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on
a Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Gets the current registry path.

The length should be at least of size MAX_PATH + 1 in order to fit
any possible registry path. The string path must be large enough
to hold length number of characters.

Example

// Display the current registry path
getRegPath(&str0, 256);
Info("Current registry path: %s", str0);

See Also

setRegPath, getRegRoot

getRegInt

Syntax

int getRegInt(int *iValue, char *szValueName, ...)

Arguments

iValue
A pointer to an integer which will contain the integer from
the registry.

szValueName
The key name of the integer to retrieve from the registry

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid
ERROR_CANTOPEN registry key could not be

opened
ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on
a Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Gets an integer value from the current registry path.

Example

// Display the current registry path
getRegPath(&str0, 256);
Info("Current registry path: %s", str0);

See Also

setRegPath, getRegRoot

getRegRoot

Syntax

int getRegRoot(int * hkey)

Arguments

hkey
Pointer to an integer value which will hold the root
identification.

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid

ERROR_CANTOPEN registry key could not be
opened

ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on
a Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Gets the current registry root.

Currently, only two types of registry roots are possible, identified
by the constants HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USER.

Example

// Check to see if we're working with HKEY_LOCAL_MACHINE
int * root;
getRegRoot(&root);
Info("Working with local machine: %s", (root ==
HKEY_LOCAL_MACHINE? "true" : "false"));

See Also

setRegRoot, getRegPath

getRegString

Syntax

int getRegString(int szString, int iMaxLen, int
szValueName[, varargs]...)

Arguments

szString
is the address of the string to be stored or retrieved

iMaxLen
is the size of the szString buffer in bytes, which specifies the
longest character string that can be stored in szString,
including the terminating null character

szValueName
is the name of the string to be set or retrieved, and may
contain printf-style formatting codes as well as FM !-codes.

varargs
is a list of optional arguments used to perform printf-style
formatting on the szValueName string.

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS index >= # of values or subkeys
(enumRegValue,

enumRegSubKey)
ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid

ERROR_CANTOPEN registry key could not be
opened

ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on
a Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Fetches a C-style character string from the Windows Registry.

Currently, only two types of registry roots are possible, identified
by the constants HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USER.

Comment

Note that this function does not work for REG_EXPAND_SZ
strings, which are a different data type to standard REG_SZ
strings.

Example

// Saves a title for your filter dialog box, and retrieves
it on next invocation
putRegString("Filter #2", "Dialog title"); //save title
for next time
 . . .

getRegString(str0, 256, "Dialog title"); //retrieve
saved title
if (strcmp(str0, "")==0) {
 //title is null or missing...
 strcpy(str0, "Default title"); //set a default title
}
setDialogText(str0); //set title for our filter dialog

See Also

getRegRoot, setRegPath

getSetPixelHeight

Syntax

int getSetPixelHeight(void);

Return

The height of the SetPixel canvas in pixels.

Description

Gets the height in pixels of the current SetPixel canvas.

Example

%fml
ctl[0]: OWNERDRAW, Color=RGB(0,0,0), Size=(100,100)
ctl[7]: STATICTEXT, Text="", Pos=(*, 120)

OnFilterStart: {

 // Get the size of the canvas
 int width, height;
 startSetPixel(0);
 width = getSetPixelWidth();
 height = getSetPixelHeight();
 endSetPixel(0);

 // Display the result
 sprintf(str0, "Pixel Dimensions: %dx%d", width, height);
 setCtlText(7, str0);

 return false;
}

See Also

endSetPixel, getSetPixelWidth, OWNERDRAW, startSetPixel

getSetPixelWidth

Syntax

int getSetPixelWidth(void);

Return

The width of the SetPixel canvas in pixels.

Description

Gets the width in pixels of the current SetPixel canvas.

Example

%fml
ctl[0]: OWNERDRAW, Color=RGB(0,0,0), Size=(100,100)
ctl[7]: STATICTEXT, Text="", Pos=(*, 120)

OnFilterStart: {

 // Get the size of the canvas
 int width, height;
 startSetPixel(0);
 width = getSetPixelWidth();
 height = getSetPixelHeight();
 endSetPixel(0);

 // Display the result
 sprintf(str0, "Pixel Dimensions: %dx%d", width, height);
 setCtlText(7, str0);

 return false;
}

See Also

endSetPixel, getSetPixelHeight, OWNERDRAW, startSetPixel

getSpecialFolder

Syntax

int getSpecialFolder(int CSIDL, string path)

Arguments

CSIDL
A CSIDL (Constant Special Item ID List) value that identifies
the folder of interest. A full list of CSIDL values can be found
at https://docs.microsoft.com/en-
us/windows/win32/shell/csidl

path
The string where the folder path result will be stored

Return

Returns true if the operation was successful, false otherwise

Description

Retrieves the path of a Windows "Special Folder", such as the
user's Desktop or My Documents folder. This function is useful
for locating the folders where a program can save its data,
particularly on Windows Vista systems.

Some useful CSIDL Values:

CSIDL_APPDATA
Hidden folder for application data specific to that user. Use
for things like INI files that the user shouldn't edit.

CSIDL_COMMON_APPDATA

https://docs.microsoft.com/en-us/windows/win32/shell/csidl

A hidden application data folder shared with all users of a
computer. Use this for settings/data that are the same for all
users of the computer.

CSIDL_COMMON_DOCUMENTS
Like the My Documents folder, but shared with all users.

CSIDL_COMMON_PICTURES
A public folder of pictures shared by all users on the
computer

CSIDL_DESKTOPDIRECTORY
The user's Desktop folder.

CSIDL_FONTS
A virtual folder that contains fonts. A typical path is
C:\Windows\Fonts.

CSIDL_MYPICTURES
The user's My Pictures folder.

CSIDL_PERSONAL
The user's My Documents folder.

Example

OnFilterStart: {
 bool errOK;
 errOK = getSpecialFolder(CSIDL_COMMON_APPDATA , str8);
 if (errOK == true) msgBox(MB_OK, "Hello", str8);
 return true;
}

getSysColor

Syntax

int getSysColor(int colorIndex)

Arguments

colorIndex
The color display element value to retrieve

Display Element Values

These values can also be found in the official [MSDN
GetSysColor] docs.

COLOR_3DDKSHADOW Dark shadow for three-dimensional
display elements.

COLOR_3DFACE
Face color for three-dimensional
display elements and for dialog box
backgrounds.

COLOR_3DHIGHLIGHT
Highlight color for three-
dimensional display elements (for
edges facing the light source.)

COLOR_3DHILIGHT
Highlight color for three-
dimensional display elements (for
edges facing the light source.)

COLOR_3DLIGHT
Light color for three-dimensional
display elements (for edges facing
the light source.)

COLOR_3DSHADOW Shadow color for three-
dimensional display elements (for

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getsyscolor

edges facing away from the light
source).

COLOR_ACTIVEBORDER Active window border.
COLOR_ACTIVECAPTION Active window title bar.

COLOR_APPWORKSPACE
Background color of multiple
document interface (MDI)
applications.

COLOR_BACKGROUND Desktop.

COLOR_BTNFACE
Face color for three-dimensional
display elements and for dialog box
backgrounds.

COLOR_BTNHIGHLIGHT
Highlight color for three-
dimensional display elements (for
edges facing the light source.)

COLOR_BTNHILIGHT
Highlight color for three-
dimensional display elements (for
edges facing the light source.)

COLOR_BTNSHADOW

Shadow color for three-
dimensional display elements (for
edges facing away from the light
source).

COLOR_BTNTEXT Text on push buttons.

COLOR_CAPTIONTEXT Text in caption, size box, and scroll
bar arrow box.

COLOR_DESKTOP Desktop.

COLOR_GRADIENTACTIVE
CAPTION

Right side color in the color
gradient of an active window's title
bar.

COLOR_GRADIENTINACTI
VECAPTION

Right side color in the color
gradient of an inactive window's
title bar.

COLOR_GRAYTEXT Grayed (disabled) text.
COLOR_HIGHLIGHT Items selected in a control.

COLOR_HIGHLIGHTTEXT Text of items selected in a control.

COLOR_HOTLIGHT Color for a hyperlink or hot-
tracked item.

COLOR_INACTIVEBORDER Inactive window border.
COLOR_INACTIVECAPTION Inactive window caption.
COLOR_INACTIVECAPTION
TEXT Color of text in an inactive caption.

COLOR_INFOBK Background color for tooltip
controls.

COLOR_INFOTEXT Text color for tooltip controls.
COLOR_MENU Menu background.

COLOR_MENUHILIGHT

The color used to highlight menu
items when the menu appears as a
flat menu. (Not supported on
Windows 2000.)

COLOR_MENUBAR

The background color for the menu
bar when menus appear as flat
menus. (Not supported on
Windows 2000.)

COLOR_MENUTEXT Text in menus.
COLOR_SCROLLBAR Scroll bar gray area.
COLOR_WINDOW Window background.
COLOR_WINDOWFRAME Window frame.
COLOR_WINDOWTEXT Text in windows.

Return

Returns the color element as an integer. Use the Rval, GVal and
BVal functions to retrieve the color component values.

Description

Retrieves the current color of the specified display element.

Example

%ffp

OnFilterStart: {
 // Make background light blue
 int color = getSysColor(COLOR_HIGHLIGHT);
 setDialogColor(color);
 return false;
}

See Also

setCtlColor, setDialogColor

getSysMem

Syntax

int getSysMem(int switch);

Return

Different integer values depending on the value of Switch - see
description.

Description

Returns some values about the system memory.

Switch Returned value
0 Percent of memory in use
1 Bytes of physical memory
2 Free physical memory bytes
3 Bytes of paging file
4 Free bytes of paging file
5 User bytes of address space
6 Free user bytes

Comment

Note that there is bug in this function that can cause memory
access violations, resulting in a crash in the host application -
please do not use this function.

getSystemDefaultLCID

Syntax

int getSystemDefaultLCID()

Return

A locale identifier LCID.

Description

Returns an identifier for the system's default locale.

See Also

getUserDefaultLCID, LCID

getThreadRetVal

Syntax

int getThreadRetVal(int hThread)

Arguments

hThread
Specifies the handle of the thread whose return value we
want.

Return

Returns the exit code of the specified thread. If the thread is still
running, returns STILL_ACTIVE. Returns 0 if hThread is not a
valid thread handle.

Description

Use this function to retrieve the exit code value for the specified
worker thread. If the thread has completed, the exit code is the
return value from the OnCtl handler. If the thread is still running,
the code STILL_ACTIVE is returned. If the thread handle is not
valid, or the function fails in some other way, 0 is returned.

Comments

The current implementation of this function is broken.
getThreadRetVal will currently only return 0 or STILL_ACTIVE.

See Also

System Functions, Multithreading Functions, countProcessors,
triggerThread, waitForThread, isThreadActive,
terminateThread

getUserDefaultLCID

Syntax

int getUserDefaultLCID()

Return

A locale identifier LCID.

Description

Returns an identifier for the user's default locale.

Example

%ffp

OnFilterStart: {
 //getLocaleInfo (LOCALE_USER_DEFAULT,
LOCALE_SENGLANGUAGE , str0, 255);
 getLocaleInfo (getUserDefaultLCID(), LOCALE_SENGLANGUAGE
, str0, 255);
 Info (str0);
 return false;
}

See Also

getSystemDefaultLCID, LCID

getWindowsVersion

Syntax

int getWindowsVersion()

Return

See example below

Description

Lets you detect the Windows version.

Example

%ffp

ForEveryTile:{

 int n = getWindowsVersion();

 switch (n) {
 default:
 case 0:
 strcpy (str0, "Unknown");
 break;
 case 11:
 strcpy (str0, "Windows Vista");
 break;
 case 10:
 strcpy (str0, "Windows 2003");
 break;
 case 9:

 strcpy (str0, "Windows XP");
 break;
 case 8:
 strcpy (str0, "Windows 2000");
 break;
 case 7:
 strcpy (str0, "Windows NT");
 break;
 case 6:
 strcpy (str0, "Windows ME");
 break;
 case 5:
 strcpy (str0, "Windows 98 SE");
 break;
 case 4:
 strcpy (str0, "Windows 98");
 break;
 case 3:
 strcpy (str0, "Windows 95 OSR2");
 break;
 case 2:
 strcpy (str0, "Windows 95");
 break;
 case 1:
 strcpy (str0, "Win32s");
 break;
 }

 Info ("You are running %s", str0);

 return true;
}

See Also

getDisplaySettings

grad2D

Syntax

int grad2D(int x, int y, int X, int Y, int grad, int dist,
int repeat)

Arguments

x
Current x coordinate in the gradient field

y
Current y coordinate in the gradient field

X
Vertical size of the gradient field

Y
Horizontal size of the gradient field

grad
Gradient type (0 = Horizontal, 1 = Vertical, 2 = Diagonal, 3 =
Diagonal2, 4 = Radial, 5 = Ellipsoid, 6 = Pyramid, 7 = Beam, 8 =
Angular, 9 = Star, 10 = Quarter Pyramid , 11 = Quarter
Pyramid 2, 12 = Quarter Radial)

dist
0 for linear output, 1 for sine distributed output

repeat
number of gradient repetitions, 0 for no repetition

Return

Returns the gradient value at the coordinates (x,y)

Description

This is a gradient engine. It lets you choose between currently 12
gradient types and contains a parameter for switching between
linear and sine distributed output. Additionally there's a
parameter for setting the number of gradient repetitions.
grad2D() returns a grayscaled gradient value. To produce color
gradients, you have to scale the output for the r, g and b values
yourself or use the function for each r, g and b value individually.
You could also use grad2d() twice with different parameters and
use blend() to merge the gradients. So there are a lot of different
possibilities. Currently only returns 8-bit color values.

Example

%ffp

ctl(0): COMBOBOX(vscroll), Action=preview,
 Color=#FFFFFF, Fontcolor=#0000ff,
 Size=(60,200),
 Text="Horizontal\nVertical\n"
 "Diagonal\nDiagonal2\nRadial\n"
 "Ellipsoid\nPyramid\nBeam\n"
 "Angular\nStar\nQuarterPyramid1\n"
 "QuarterPyramid2\nQuarter Radial",
 Val=0
ctl(5): "Repeat", Pos=(270,30), Range=(0,128)
ctl(1): CHECKBOX, Text="Invert", Pos=(270,40)
ctl(2): CHECKBOX, Text="Sine Distribution", Pos=(270,50)
ctl(3): CHECKBOX, Text="Do Some Color Mixing", Pos=
(270,70)

ForEveryTile:
{
 int gradient, col;

 for (y=y_start; y < y_end; y++) {

 updateProgress(y,y_end);

 for (x=x_start; x < x_end; x++) {

 for (z=0; z < Z; z++) {

 if (ctl(3)) col=(z+1); else col=1;

 gradient = grad2D(x, y, X*col, Y*col, ctl(0),
ctl(2), ctl(5));

 if (ctl(1)) gradient = 255 - gradient;

 pset(x, y, z, gradient);
 }
 }
 }

 return true;
}

See Also

blend

gray

Syntax

int gray(int r, int g, int b, int rweight, int gweight, int
bweight)

Arguments

r
The Red pixel color value

g
The Green pixel color value

b
The Blue pixel color value

rweight
The weighting given to the red color in the grayscale
algorithm

gweight
The weighting given to the green color in the grayscale
algorithm

bweight
The weighting given to the blue color in the grayscale
algorithm

Return

The new grayscale pixel value.

Description

Applies a simple grayscale effect to a given RGB pixel value,
according to the weightings provided.

Example

ctl[0]: "Red Weight", Range=(1,500), Val=250
ctl[1]: "Green Weight", Range=(1,500), Val=250
ctl[2]: "Blue Weight", Range=(1,500), Val=250

ForEveryTile: {
 int r, g, b;
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);
 for (z=0; z < 3; z++) {
 pset(x,y,z, gray(r, g, b, ctl(0), ctl(1),
ctl(2)));
 }
 }
 }
 return true;
}

See Also

blend, contrast, gamma, saturation

GROUPBOX

Syntax

ctl[n]: GROUPBOX(Class Specific Properties), Other
Properties

Description

The Groupbox is a rectangular outline with a text label that can
be used to visually surround a number of related controls. It is
also useful for defining groups of Radiobuttons. Note that the
groupbox is not an actionable control.

Class Specific Properties

CENTER
Aligns the text label to the center.

FLAT
Gives the groupbox a flat appearance.

GROUP
Defines the end of the radio button group.

LEFT
Aligns the text label to the left. (default)

RIGHT
Aligns the text label to the right.

Other Properties

Text
Defines text to be put on the top line of the groupbox area
(default = no text)

Val
Assigns a value to the groupbox (default = 0)

Color
Sets text background color (default = transparent)

FontColor
Sets text color (default = white)

Example

ctl[1]: GROUPBOX(CENTER), Text="Groupie", Size=(70,50),
Color=CadetBlue, FontColor=Red

See Also

RADIOBUTTON.

Gval

Syntax

int Gval(int rgb)

Arguments

rgb
Either a 32-bit RGB triple or a 32-bit RGBA quadruple; in
either case, the red, green and blue channels are represented
as eight bit values, as is the alpha channel in the RGBA form.

Return

A value in the range 0 to 255 inclusive.

Description

The return value represents the value of the green channel,
extracted from the triple (or quadruple).

Example

// Gives the green channel value
// from current foreground color
green = Gval(fgColor);

See Also

Aval, Bval, Rval

haveMask

Syntax

bool haveMask

Description

Boolean variable that is true when a non-rectangular area has
been selected.

See Also

msk, isFloating

HDBUsToPixels

Syntax

HDBUsToPixels(int hdbu)

Arguments

hdbu
Number of HDBUs to convert to pixels

Description

Converts HDBU (horizontal dialog base units, the measurement
by which FilterMeister dialogs are constructed) to real on-screen
pixels measurement. Note that the result of this conversion
depends on the users' Windows installation and may vary.

Example

Info("DialogSize in pixels: %d x %d",
HDBUsToPixels(getDialogWidth()),
VDBUsToPixels(getDialogHeight()));

See Also

PixelsToHDBUs, PixelsToVDBUs, HDBUsToPixels

hostSerialNumber

Syntax

int hostSerialNumber

Description

The host application's serial number. Most graphics programs
(including Photoshop® on Windows) do not support this feature.

Comment

The Mac version of Adobe Photoshop® apparently sets this field
to a valid serial number, but on Windows versions this field is
always set to 0.

Example

sprintf(str0, "Your host application serial number is:
%d", hostSerialNumber);

if (hostSerialNumber == 0) {
 strcat(str0, "\n\n(This means your graphics program
probably\ndoesn't support serial numbers.)");
}

Info(str0);

hostSig

Syntax

int hostSig

Description

The host application provides its signature in this variable. Adobe
Photoshop’s signature is '8BIM' (0x3842494D , or 943868237 as an
integer). In theory, you can check for Photoshop as the host
application with the following code; however, some other ill-
behaved hosts also set hostSig to '8BIM'.

Example

%ffp

ForEveryTile:
{

 Info("%d", hostSig);

 if (hostSig == '8BIM')
 Info("Host is Adobe Photoshop.");

 return true;

}

hsl2rgb

Syntax

int hsl2rgb (int h, int s, int l, int z)

Arguments

h
Hue value

s
Saturation value

l
Lightness value

z
Determines which value is returned. z=0 for Red, z=1 for
Green, z=2 for Blue

Return

Returns the red, green or blue value from 0 to 255 depending on
the value of z

Description

Lets you convert HSL values to RGB values.

Example

%ffp

ctl(0): "Adjust H", Range=(-255,255), val=0
ctl(1): "Adjust S", Range=(-255,255), val=0
ctl(2): "Adjust L", Range=(-255,255), val=0

ForEveryTile: {

 int r,g,b,h,s,l;

 for (y= y_start; y < y_end; y++) {
 if (updateProgress(y,y_end)) abort();
 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 h = rgb2hsl (r,g,b,0);
 s = rgb2hsl (r,g,b,1);
 l = rgb2hsl (r,g,b,2);

 // Do the HSL adjustment
 h = h + ctl(0);
 s = s + ctl(1);
 l = l + ctl(2);

 pset(x, y, 0, hsl2rgb (h,s,l,0));
 pset(x, y, 1, hsl2rgb (h,s,l,1));
 pset(x, y, 2, hsl2rgb (h,s,l,2));
 }
 }

 return true;
}

See Also

rgb2hsl

hypot

Syntax

double hypot(double x, double y)

Arguments

x
First distance.

y
Second distance.

Return

The euclidean distance of the two parameters.

Description

Calculates the hypotenuse (euclidean distance): The distance
between the endpoint of two adjoining perpendicular distances.
Solves Pythagoras formula; distance2 = x2 + y2

iceil

Syntax

int iceil(double number)

Arguments

number
Any double or float number.

Return

The rounded value as an integer.

Description

Returns the smallest integral value greater than or equal to
number, as an integer.

Example

%ffp

OnFilterStart:
{
 Info("Rounding 2.345 to ceiling gives %d",
iceil(2.345));
 Info("Rounding -2.345 to ceiling gives %d",
iceil(-2.345));
}

See Also

ceil, ichop, ifloor, iround

ichop

Syntax

int chop(double number)

Arguments

number
Any double or float number.

Return

The truncated value as an integer.

Description

Returns the value of number truncated, towards 0.0, to an
integral value, as an integer.

Example

%ffp

OnFilterStart:
{
 Info("Chopping 2.543 towards 0.0 gives %d",
ichop(2.543));
 Info("Chopping -2.345 towards 0.0 gives %d",
ichop(-2.345));
}

See Also

chop, iceil, ifloor, iround, ipow

ICON

Syntax

ctl[n]: ICON(Class Specific Properties), Other Properties

Description

The class ICON allows the filter developer to place an icon in the
dialog window. By default, this user control is not actionable.

Class Specific Properties

CENTERIMAGE
Scales the icon to original size and centers the image within
the control.

NOTIFY
Makes the user control actionable and activates tooltip.

Other Properties

Val
Assigns a value to the icon, but only when it is disabled.
(default = 0)

Example

ctl[0]: ICON, Image="Rubberduck.ico"

Comment

Once the icon is actionable, its value definitions are lost. The
reason is that an action returns a specific value and overwrites

(once the mouse button is clicked over the icon) the icon's value.

When standalone filters are created, icons are not embedded by
default. You can use the Embed: function to embed the icon into
the standalone filter file.

The icon file should be present in the active directory or in any of
the directories set in the PATH or FM_PATH variables (check
your AUTOEXEC.BAT file).

See Also

BITMAP, IMAGE, METAFILE

ifloor

Syntax

int ifloor(double number)

Arguments

number
Any double or float number.

Return

The rounded value, as an integer.

Description

Returns the largest integral value smaller than or equal to
number, as an integer.

Example

%ffp

OnFilterStart:
{
 Info("Rounding 2.345 to floor gives %d",
ifloor(2.345));
 Info("Rounding -2.345 to floor gives %d",
ifloor(-2.345));
}

See Also

floor, iceil, ichop, iround

iget

Syntax

int iget(double x, double y, int z, int buffer, int mode)

Arguments

x, y
The x and y coordinates in the image. They have to be float or
double values, otherwise no interpolation is done.

z
The z coordinates or color channel

buffer
Set 0 for the input buffer, 1 for the first tile buffer, 2 for the
second tile buffer and 3 for the output buffer.

mode
Interpolation method: 0 for nearest neighbor (no interpolation), 1
for bisquare, 2 for bicosine, 3 for bilinear and 4 for bicubic.

Return

Returns an interpolated color value from the coordinates (x,y,z).

Considering the mathematical properties of the interpolation
functions, the returned color value may sometimes be greater than
255 or smaller than 0. You may want to limit it between 0 and 255, if
you're using the value as an argument to functions that don't
automatically limit it (e.g., the RGB function).

Description

This function makes it easy to create real smooth effects. It lets you
choose between 5 different interpolation methods. This function does
some value caching, so it works quite fast. Currently it only works for
8 bit images.

Comments

It's worth remembering that this function returns int and not
double . If you try using iget and find that your image is all black, it's
probably because you got your ints and doubles mixed up somewhere.

Example

%ffp

// Demonstrates image resizing

ctl(0): "Resize", Range=(0,800), Val=200
ctl(10): COMBOBOX(vscroll), Action=preview,
 Color=#FFFFFF, Fontcolor=#0000ff,
 Pos=(325,40), Size=(70,200),
 Text="Nearest Neighbor\n"
 "Bisquare\nBicosine\nBilinear\n"
 "Bicubic", Val=0
ctl(100): STATICTEXT, Pos=(325,70), "",
 Fontcolor=black

ForEveryTile:
{
 float p1,q1,fracx,fracy,CalcD,dx,dy;
 int Xnew,Ynew,p,q,Calc;
 int m,n;
 const int startclock = clock();
 int endclock;

 // New image dimensions
 Xnew = X*ctl(0)/100;
 Ynew = Y*ctl(0)/100;

 // rows
 for (y = y_start; y < y_end; y++) {

 updateProgress(y, y_end);

 // columns
 for (x = x_start; x < x_end; x++) {

 p1=(float)x*X/Xnew;
 q1=(float)y*Y/Ynew;

 // channels
 for (z=0; z < zmax; z++) {

 if (y < Ynew && x < Xnew) {
 Calc = iget(p1,q1,z,0,ctl(10));
 } else {
 // Set the rest of the image to black
 Calc = 0;
 }
 pset(x, y, z, Calc);

 }
 }
 }

 // Display calculation time
 endclock = clock() - startclock;
 setCtlTextv(100, "Calculation Time: %d ms", endclock);

 return true;
}

See Also

src, tget, t2get, pget

IMAGE

Syntax

ctl[n]: IMAGE(Class Specific Properties), Other Properties

Description

The class IMAGE allows the filter designer to place a bitmap in
the dialog window. The bitmap will be transparent according to
the top-left pixel color. By default, this user control is not
actionable.

Class Specific Properties

CENTERIMAGE
Scales the image to original size and centers it within the
control.

NOTIFY
Makes the user control actionable and activates tooltip.

Other Properties

Val
Assigns a value to the image, but only when it is disabled.
(default = 0)

Example

ctl[0]: IMAGE, Image="Logo.bmp"
ctl[1]: IMAGE(MODALFRAME), Image="aa.bmp"

Notes

Once the image is actionable, its value definitions are lost. The
reason is that an action returns a specific value and overwrites
(once the mouse button is clicked over the image) the image's
value.

Currently only BMP files are supported.

When standalone filters are created, images are not embedded by
default. You can use the Embed: function to embed the icon into
the standalone filter file.

The image file should be present in the active directory or in any
of the directories set in the PATH or FM_PATH variables (check
your AUTOEXEC.BAT file).

See Also

BITMAP, ICON, METAFILE

imageMode

Syntax

int imageMode

Description

The mode of the image being filtered, where Bitmap = 0, Gray
Scale = 1, Indexed Color = 2, RGB Color = 3, CMYK Color = 4, HSL
Color = 5, HSB Color = 6, Multichannel = 7, Duotone = 8, Lab
Color = 9, 16-bit Gray Scale = 10, and 48-bit RGB Color = 11.

Example

%ffp

OnFilterStart: {
 switch(imageMode) {
 case 0:
 Info ("Bitmap (1-bit) Image");
 break;
 case 1:
 Info ("Greyscale Image");
 break;
 case 2:
 Info ("Indexed Color Image");
 break;
 case 3:
 Info ("RGB Image");
 break;
 case 4:
 Info ("CMYK Image");
 break;

 case 5:
 Info ("HSL Image");
 break;
 case 6:
 Info ("HSB Image");
 break;
 case 7:
 Info ("Multichannel Image");
 break;
 case 8:
 Info ("Duotone Image");
 break;
 case 9:
 Info ("Lab Color Image");
 break;
 case 10:
 Info ("16-bit Greyscale Image");
 break;
 case 11:
 Info ("48-bit RGB Color Image");
 break;
 default:
 Info ("Unknown image mode");
 break;
 }
 return false;
}

Info

Syntax

int Info(string promptString, ...)

Arguments

promptString
Specifies the prompt string for the message window. This
string may contain printf-style format descriptors, which will
be expanded using the succeeding arguments. It may also
contain FilterMeister-specific format descriptors.

...
Variable number of arguments of varying types, should
correspond to the format descriptors in promptString.

Return

IDOK once the user has clicked the Ok button.

Description

This function displays an information box containing a text string
and an OK button.

Comment

You can also use FilterMeister format descriptors (such as the !M
shown above) in the string passed to the Info function. For a full
list of FilterMeister-specific extensions, please see the entry for
formatString.

Example

Info ("Press OK to continue");
Info ("Your image measures: %d x %d", X, Y);
Info ("This is a\nmulti-line\nInfo-box.");
Info ("Your image mode is:\n!M");

See Also

msgBox, formatString

insertMenuItem

Syntax

int insertMenuItem (int hMenu, int uItem, LPSTR itemName,
int fState, int subMenu)

Arguments

hMenu
Handle to the menu in which the new menu item is inserted.

uItem
Unique identifier of the menu item. Must not be 0 or order
may be changed.

itemName
Menu item string. If itemName is "---", a horizontal line will
be appear.

fState
Menu item state, e.g. MFS_CHECKED, MFS_DEFAULT,
MFS_DISABLED, MFS_ENABLED, MFS_GRAYED,
MFS_HILITE, MFS_UNCHECKED, MFS_UNHILITE.

subMenu
Handle to the submenu associated with the menu item. If the
menu item is not an item that opens a submenu, please use
0.

Return

Returns true if succeeded.

Description

Inserts a new menu item into the given menu.

Comment

Menu items appear in the same order as the order of
insertMenuItem() calls.

Example

%ffp

ctl[0]: PUSHBUTTON, "Click Me!"

OnCtl(n): {

 if (n==0 && e == FME_CLICKED){
 int menu=0;

 menu = createPopupMenu();

 insertMenuItem(menu, 1, "Do This",MFS_ENABLED , NULL);
 insertMenuItem(menu, 2, "Do That",MFS_ENABLED |
MFS_DEFAULT, NULL);
 insertMenuItem(menu, 3, "Do Nothing",MFS_ENABLED,
NULL);
 Info("Selection: %d", trackPopupMenu (menu, 1, 0,0,0)
);

 destroyMenu(menu);
 }

 return false;
}

See Also

createPopupMenu, trackPopupMenu, destroyMenu

ipow

Syntax

int ipow(int x, int y)

Arguments

x
The value to be raised to a power.

y
The power to which the value is raised.

Return

x raised to the power of y.

Description

Returns x raised to the power of y: xy

Example

%fml

OnFilterStart:
{
 // This should give 2x2x2 = 8
 Info("ipow(2, 3) gives %d", ipow(2, 3));
}

See Also

pow, powi

iround

Syntax

int iround(double number)

Arguments

number
Any double or float number.

Return

The rounded value as an integer.

Description

Returns the value of number rounded to the nearest or even
integral value, as an integer.

Example

%ffp

OnFilterStart:
{
 Info("Rounding 2.543 gives %d", iround(2.543));
 Info("Rounding -2.500 gives %d", iround(-2.500));
}

See Also

iceil, ichop, ifloor, round

isFloating

Syntax

bool isFloating

Description

Boolean variable that is true when the selection is floating.

Comments

A floating selection is a temporary layer, that can under
Photoshop be created by the following actions:

Repositioning a selection with the Move Tool.
Duplicating a selection by holding down the Alt key while
dragging it with the Move Tool.

See Also

msk, haveMask

isThreadActive

Syntax

bool isThreadActive(int hThread)

Arguments

hThread
Specifies the handle of the thread to be checked, or 0 to
check whether any worker thread is currently active.

Return

Returns true if the specified thread (or any worker thread when
hThread is 0) is running, or false if the specified thread (or no
threads) are running.

Description

Use this function to test whether a particular worker thread, or
any worker thread, is still running. Set hThread to the handle
returned from the call to triggerThread to test a particular
thread, or set hThread to 0 to test if any worker thread created
by triggerThread is still running. This function checks the
current exit code of a thread, and returns true if the exit code is
STILL_ACTIVE.

See Also

System Functions, Multithreading Functions, countProcessors,
triggerThread, waitForThread, getThreadRetVal,
terminateThread

iuv2rgb

Syntax

int iuv2rgb(int i, int u, int v, int z)

Arguments

i
i value

u
u value

v
v value

z
Determines which value is returned. z=0 for Red, z=1 for
Green, z=2 for Blue

Return

Returns the red, green or blue value depending on the value of z

Description

Lets you convert YUV values to RGB values.

Example

%ffp

ctl(0): "Y Adjust", Range=(-255,255), Val=0
ctl(1): "U Adjust", Range=(-255,255), Val=0
ctl(2): "V Adjust", Range=(-255,255), Val=0

ForEveryTile:
{
 int r,g,b,i,u,v;

 for (y = y_start; y < y_end; y++) {

 updateProgress(y,y_end);

 for (x = x_start; x < x_end; x++) {

 r=src(x,y,0);
 g=src(x,y,1);
 b=src(x,y,2);

 i=rgb2iuv(r,g,b,0) + ctl(0);
 u=rgb2iuv(r,g,b,1) + ctl(1);
 v=rgb2iuv(r,g,b,2) + ctl(2);

 r=iuv2rgb(i,u,v,0);
 g=iuv2rgb(i,u,v,1);
 b=iuv2rgb(i,u,v,2);

 pset(x, y, 0, r);
 pset(x, y, 1, g);
 pset(x, y, 2, b);
 }
 }

 return true;
}

See Also

rgb2iuv

lab2rgb

Syntax

int lab2rgb(int l, int a, int b, int z)

Arguments

l
Red value

a
Green value

b
Blue value

z
Determines which value is returned. z=0 for Red, z=1 for
Green, z=2 for Blue

Return

Returns the red, green or blue value depending on the value of z

Description

Lets you convert Lab values to RGB values.

Example

%ffp

ctl(0): "L Adjust", Range=(-255,255), Val=0
ctl(1): "a Adjust", Range=(-255,255), Val=0
ctl(2): "b Adjust", Range=(-255,255), Val=0

ForEveryTile:{

 int r,g,b,l,a,b2;

 for (y = y_start; y < y_end; y++) {

 if (updateProgress(y, y_end)) abort();

 for (x = x_start; x < x_end; x++){

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 l = rgb2lab (r,g,b,0);
 a = rgb2lab (r,g,b,1);
 b2 = rgb2lab (r,g,b,2);

 // Do the Lab adjustment
 l = l + ctl(0);
 a = a + ctl(1);
 b2 = b2 + ctl(2);

 r = lab2rgb (l,a,b2,0);
 g = lab2rgb (l,a,b2,1);
 b = lab2rgb (l,a,b2,2);

 pset(x, y, 0, r);
 pset(x, y, 1, g);
 pset(x, y, 2, b);

 }
 }

 return true;
}

See Also

rgb2lab

LCID

Description

An LCID is a LoCale IDentifier, it is used to uniquely specify a
specific set of culture, language and other locally determined
settings. An LCID is an integer number.

Following is a list of all LCID's currently implemented in
FilterMeister (in alphabetic order).

Locale LCID
Afrikaans - South Africa 1078
Albanian - Albania 1052
Amharic - Ethiopia 1118
Arabic - Saudi Arabia 1025
Arabic - Algeria 5121
Arabic - Bahrain 15361
Arabic - Egypt 3073
Arabic - Iraq 2049
Arabic - Jordan 11265
Arabic - Kuwait 13313
Arabic - Lebanon 12289
Arabic - Libya 4097
Arabic - Morocco 6145
Arabic - Oman 8193
Arabic - Qatar 16385
Arabic - Syria 10241
Arabic - Tunisia 7169

Arabic - U.A.E. 14337
Arabic - Yemen 9217
Armenian - Armenia 1067
Assamese 1101
Azeri (Cyrillic) 2092
Azeri (Latin) 1068
Basque 1069
Belarusian 1059
Bengali 1093
Bengali (Bangladesh) 2117
Bosnian (Bosnia/Herzegovina) 5146
Bulgarian 1026
Burmese 1109
Catalan 1027
Cherokee - United States 1116
Chinese - People's Republic of China 2052
Chinese - Singapore 4100
Chinese - Taiwan 1028
Chinese - Hong Kong SAR 3076
Chinese - Macao SAR 5124
Croatian 1050
Croatian (Bosnia/Herzegovina) 4122
Czech 1029
Danish 1030
Divehi 1125
Dutch - Netherlands 1043
Dutch - Belgium 2067
Edo 1126

English - United States 1033
English - United Kingdom 2057
English - Australia 3081
English - Belize 10249
English - Canada 4105
English - Caribbean 9225
English - Hong Kong SAR 15369
English - India 16393
English - Indonesia 14345
English - Ireland 6153
English - Jamaica 8201
English - Malaysia 17417
English - New Zealand 5129
English - Philippines 13321
English - Singapore 18441
English - South Africa 7177
English - Trinidad 11273
English - Zimbabwe 12297
Estonian 1061
Faroese 1080
Farsi 1065
Filipino 1124
Finnish 1035
French - France 1036
French - Belgium 2060
French - Cameroon 11276
French - Canada 3084
French - Democratic Rep. of Congo 9228

French - Cote d'Ivoire 12300
French - Haiti 15372
French - Luxembourg 5132
French - Mali 13324
French - Monaco 6156
French - Morocco 14348
French - North Africa 58380
French - Reunion 8204
French - Senegal 10252
French - Switzerland 4108
French - West Indies 7180
Frisian - Netherlands 1122
Fulfulde - Nigeria 1127
Gaelic (Ireland) 2108
Gaelic (Scotland) 1084
Galician 1110
Georgian 1079
German - Germany 1031
German - Austria 3079
German - Liechtenstein 5127
German - Luxembourg 4103
German - Switzerland 2055
Greek 1032
Guarani - Paraguay 1140
Gujarati 1095
Hausa - Nigeria 1128
Hawaiian - United States 1141
Hebrew 1037

Hindi 1081
Hungarian 1038
Ibibio - Nigeria 1129
Icelandic 1039
Igbo - Nigeria 1136
Indonesian 1057
Inuktitut 1117
Italian - Italy 1040
Italian - Switzerland 2064
Japanese 1041
Kannada 1099
Kanuri - Nigeria 1137
Kashmiri 2144
Kashmiri (Arabic) 1120
Kazakh 1087
Khmer 1107
Konkani 1111
Korean 1042
Kyrgyz (Cyrillic) 1088
Lao 1108
Latin 1142
Latvian 1062
Lithuanian 1063
Macedonian (FYROM) 1071
Malay - Malaysia 1086
Malay - Brunei Darussalam 2110
Malayalam 1100
Maltese 1082

Manipuri 1112
Maori - New Zealand 1153
Marathi 1102
Mongolian (Cyrillic) 1104
Mongolian (Mongolian) 2128
Nepali 1121
Nepali - India 2145
Norwegian (Bokmål) 1044
Norwegian (Nynorsk) 2068
Oriya 1096
Oromo 1138
Papiamentu 1145
Pashto 1123
Polish 1045
Portuguese - Brazil 1046
Portuguese - Portugal 2070
Punjabi 1094
Punjabi (Pakistan) 2118
Quecha - Bolivia 1131
Quecha - Ecuador 2155
Quecha - Peru 3179
Rhaeto-Romanic 1047
Romanian 1048
Romanian - Moldava 2072
Russian 1049
Russian - Moldava 2073
Sami (Lappish) 1083
Sanskrit 1103

Sepedi 1132
Serbian (Cyrillic) 3098
Serbian (Latin) 2074
Sindhi - India 1113
Sindhi - Pakistan 2137
Sinhalese - Sri Lanka 1115
Slovak 1051
Slovenian 1060
Somali 1143
Sorbian 1070
Spanish - Spain (Modern Sort) 3082
Spanish - Spain (Traditional Sort) 1034
Spanish - Argentina 11274
Spanish - Bolivia 16394
Spanish - Chile 13322
Spanish - Colombia 9226
Spanish - Costa Rica 5130
Spanish - Dominican Republic 7178
Spanish - Ecuador 12298
Spanish - El Salvador 17418
Spanish - Guatemala 4106
Spanish - Honduras 18442
Spanish - Latin America 58378
Spanish - Mexico 2058
Spanish - Nicaragua 19466
Spanish - Panama 6154
Spanish - Paraguay 15370
Spanish - Peru 10250

Spanish - Puerto Rico 20490
Spanish - United States 21514
Spanish - Uruguay 14346
Spanish - Venezuela 8202
Sutu 1072
Swahili 1089
Swedish 1053
Swedish - Finland 2077
Syriac 1114
Tajik 1064
Tamazight (Arabic) 414
Tamazight (Latin) 1119
Tamil 1097
Tatar 1092
Telugu 1098
Thai 1054
Tibetan - Bhutan 2129
Tibetan - People's Republic of China 1105
Tigrigna - Eritrea 2163
Tigrigna - Ethiopia 1139
Tsonga 1073
Tswana 1074
Turkish 1055
Turkmen 1090
Uighur - China 1152
Ukrainian 1058
Urdu 1056
Urdu - India 2080

Uzbek (Cyrillic) 2115
Uzbek (Latin) 1091
Venda 1075
Vietnamese 1066
Welsh 1106
Xhosa 1076
Yi 1144
Yiddish 1085
Yoruba 1130
Zulu 1077
HID (Human Interface Device) 1279

See Also

getSystemDefaultLCID, getUserDefaultLCID

ldexp

Syntax

double ldexp(double x, int exp)

Arguments

x
Double-precision floating point value.

exp
Exponent.

Return

Floating-point value equal to x * 2^^exp^^.

Description

Calculates the floating point value corresponding to the given
mantissa and exponent, such that:

x * 2^^exp^^

where x parameter represents mantissa and exp parameter the
exponent.

leaveCriticalSection

Syntax

bool leaveCriticalSection(int hCS)

Arguments

hCS
Specifies the handle of the Critical Section to be exited, as
returned by a call to createCriticalSection.

Return

This function returns true after immediately relinquishing
ownership of the Critical Section. It returns false if hCS is zero.

Description

This function exits a specified Critical Section, thereby
relinquishing ownership of it and allowing another waiting thread
to enter the Critical Section. Critical Sections must be exited in
the reverse order in which they were entered. It is an error to
exit a Critical Section that is not owned by the current thread. A
thread may enter a specific Critical Section several times (i.e., in a
nested or recursive fashion), in which case it must also exit the
Critical Section the same number of times before another thread
can gain access to it.

For more information about Critical Sections, see the MSDN
documentation about [Critical Section Objects].

Example

https://docs.microsoft.com/en-us/windows/win32/sync/critical-section-objects

See the createCriticalSection example.

See Also

System Functions, createCriticalSection, enterCriticalSection,
tryEnterCriticalSection, deleteCriticalSection

Comments

One need not normally test the return value of
leaveCriticalSection. This is merely a check to make sure that
hCS is non-zero so the LeaveCriticalSection Win32 API won't
cause a memory access violation.

linearInterpolate

Syntax

int linearInterpolate(int v1, int v2, double x)

Arguments

v1
The first value to interpolate between

v2
The second value to interpolate between

x
The point between the two values to interpolate at, a floating
value between 0.0 and 1.0.

Return

The integer result of interpolating between the two values.

Description

Interpolates between two values according to a linear function. If
you have values at two known points, you can estimate
(interpolate) the value somewhere between those two points
using this function. This is useful if you need to estimate a pixel
value "between" the actual pixels, for example when zooming into
an image. Linear interpolation assumes that the values continue
like a straight line between those two points.

Example

This example performs a kind of bilinear zoom operation.

%fml
ctl[0]: STANDARD, Text="Zoom", Val=100

ForEveryTile: {
 for (y=0; y < Y; y++) {
 for (x=0; x < X; x++) {
 for (z=0; z < Z; z++) {

 double srcx = 100.0 * x / ctl(0);
 double srcy = 100.0 * y / ctl(0);

 int topleft = src((int)floor(srcx),
(int)floor(srcy), z);
 int topright = src((int)ceil(srcx),
(int)floor(srcy), z);
 int lwrleft = src((int)floor(srcx),
(int)ceil(srcy), z);
 int lwrright = src((int)ceil(srcx),
(int)ceil(srcy), z);

 int interpolatedtop = linearInterpolate(topleft,
topright, srcx - floor(srcx));
 int interpolatedlwr = linearInterpolate(lwrleft,
lwrright, srcx - floor(srcx));
 int interpolated =
linearInterpolate(interpolatedtop, interpolatedlwr, srcy -
floor(srcy));

 pset(x, y, z, interpolated);

 }
 }
 }
 return true;
}

Comment

To perform bilinear interpolation across an image, it is easier to
use the iget function, which does the hard work for you.

See Also

iget, cosineInterpolate

LISTBOX

Syntax

ctl[n]: LISTBOX(Class Specific Properties), Other Properties

Description

Listboxes are good for scrollable lists. If you need the "pull-down
menu"-style, use the COMBOBOX class. The items in the listbox
are specified in the text string separated with the new line
escape sequence (\n) and each item has its individual value.

Class Specific Properties

DISABLENOSCROLL
Used in conjunction with HSCROLL or VSCROLL; if the item
amount is less than needed to require scrolling, the scrollbar
is disabled and not removed.

HSCROLL
If necessary, a horizontal scrollbar is activated.

INTEGRALHEIGHT
The height of the listbox is resized according to the items'
height. (default)

MULTICOLUMN
Items are arranged in columns (also depends on Size-
property)

NOINTEGRALHEIGHT
The height of the listbox is resized according to the Size
property, even if items are partially displayed.

SORT
Sorts the items in alphabetical order. The values of the items
are recomputed; top item is always 0 and continues with 1, 2,
etc.

VSCROLL
If necessary, a vertical scrollbar is activated.

Other Properties

Text
Defines the listbox's text contents (default = no Text)

Val
Assigns a value to the listbox and activates the item (default =
-1)

Example

ctl[0]: LISTBOX, "Multiply\nScreen\nLighten\nDarken"
ctl[1]: LISTBOX(NOINTEGRALHEIGHT),
"Uno\nDos\nTres\nCuatro\nCinco", Val=2, Size=(40,30)

See Also

COMBOBOX

loadLib

Syntax

int loadLib(char *dllName)

Arguments

dllName
The name of the DLL to load.

Return

Returns a handle to the DLL, or 0 if the DLL could not be loaded.

Description

Loads a DLL into memory, allowing you to call the functions
contained in that DLL.

Example

// This code loads the user32.dll
// DLL included with Windows and
// uses it to display a YES/NO
// Message Box.

int lib_user32, functionPointer, returnval;

// Load the DLL library
lib_user32 = loadLib("user32");
if (!lib_user32) msgBox(MB_OK, "Error", "DLL was not
loaded");

// Get the function in the DLL
functionPointer = getLibFn(lib_user32, "MessageBoxA");
if (!functionPointer) msgBox(MB_OK, "Error", "Function
wasn't loaded");

// Call the function
strcpy(str0, "The window text is here");
strcpy(str1, "Caption Text");
returnval = callLib(functionPointer, NULL, str0, str1,
MB_YESNO);

// Process return value
if (returnval == IDYES)
 msgBox(MB_OK, "Yes!", "Yes was clicked");
if (returnval == IDNO)
 msgBox(MB_OK, "No :(", "No was clicked");

// Free the library DLL
freeLib(lib_user32);

See Also

callLib, getLibFn, freeLib

lockHost

Syntax

void* lockHost(int bufferID)

Arguments

bufferID
The ID of the memory buffer to lock.

Return

A pointer to the memory block allocated by the host application.

Description

Retrieves a pointer to a memory block allocated by the host
application with the allocHost function. Since some graphics
programs like Photoshop manage memory themselves, you might
want to use this in preference to the C-language system memory
functions like malloc.

Example

int bufferID = allocHost(100);
if (bufferID == NULL) {
 Warn("Could not allocate memory");
}
else {
 char* memptr = lockHost(bufferID);
 sprintf(memptr, "Message goes here!");
 Info(memptr);

 freeHost(bufferID);
}

See Also

allocHost, freeHost

lockWindow

Syntax

int lockWindow(int c)

Arguments

c
Set it to 1 to suppress updates of the filter dialog. Set it to 0
to unlock the window again.

Return

If the function succeeds, the return value is nonzero. If the
function fails, the return value is zero.

Description

This function disables or enables drawing in the filter dialog. It is
only recommended to use it if you want to do a lot of changes to
the filter dialog, e.g. moving, removing or adding dozens of
control. Under some conditions, e.g. STRETCHED dialog
attribute, this can take a few seconds. By using lockWindow(1)
infront of the code and lockWindow(0) afterwards, the changes
will take only a few milliseconds.

Example

%ffp

ctl(1): PUSHBUTTON, Text="Lock Window", Size=(60,15)
ctl(3): PUSHBUTTON, Text="UnLock Window", Size=(60,15)
ctl(6): STATICTEXT, "Press 'Lock Window', try to use the

zoom controls and then press 'UnLock Window'.", Size=
(100,50)

OnCtl(n):
{
 int r;

 if (n==3 && e == FME_CLICKED) {
 lockWindow(0);
 }
 else if (n==1 && e == FME_CLICKED) {
 lockWindow(1);
 }

 return false;
}

See Also

refreshWindow, refreshCtl, refreshRgn

log

Syntax

double log(double x)

Arguments

x
Value to be processed.

Return

Logarithm of x.

Description

Returns the natural logarithm of parameter x.

See Also

log10

log10

Syntax

double log10(double x)

Arguments

x
Value to be processed.

Return

Logarithm base 10 of x.

Description

Returns the logarithm base 10 of parameter x: log,,10,, x.

See Also

log

malloc

Syntax

void* malloc(int size)

Arguments

size
The size of the memory to be reserved, measured in bytes.

Return

A pointer to the allocated memory.

Description

Reserves size bytes memory. If the memory could be allocated, a
pointer to the first element in the reserved memory block is
returned. If the memory could not be allocated (e.g. due to
memory shortage or a high degree of memory fragmentation), a
NULL value is returned instead.

Any memory reserved by use of this function must be manually
deallocated by means of the free function, failure to do so will
result in memory leakage and will ultimately crash the system.

Example

%ffp

OnFilterStart:
{
 // Allocate a string for

 // 255 characters
 char* buffer_1 = malloc(255);

 free(buffer_1);
}

See Also

calloc, free, realloc

map
For Filter Factory compatibility only

Syntax

int map(int i, int n)

Arguments

i
The index number, divided by two, of the first of two
consecutive slider controls

n
The value to map between the range.

Return

The pixel value mapped to the narrower range of values.

Description

The map function takes two consecutive STANDARD values and
maps the given pixel value between them. Lowering the Map 1
slider value causes the image to brighten, while raising the Map 2
slider value causes it to darken, if applied to an entire image.

Internally, the map function works like this:

(n < MAP2) ? 0 : (n > MAP1) ? 255 : (MAP1 == MAP2) ? 255 :
(n-MAP2)*255/(MAP1-MAP2);

Example

%ffp

ctl[2]: "Map 1", Range=(0,255), Val=255
ctl[3]: "Map 2", Range=(0,255), Val=0

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 pset(x,y,z, map(1, src(x,y,z)));
 }
 }
 }
 return true;
}

max

Syntax

int max(int a, int b)

Arguments

a
Any integer.

b
Any integer.

Return

The greater value of a and b.

Description

Returns the greatest of the two given values a and b. A common
use for max is to truncate a variable to a certain lower boundary.

Example

// sets p to 2
int p = max(1, 2);

See Also

add, min, sub

memchr

Syntax

void *memchr(const void *membuffer, int val, int size)

Arguments

membuffer
The string / memory buffer to search

val
The byte value to search for

size
The size (in bytes) of the memory block to search. Must be
equal to or less than the buffer size, or buffer overrun errors
can occur.

Return

Returns a memory location pointer to the first occurrence of the
given value in the memory block, or NULL if the value is not
found.

Description

memchr searches a block of memory for the first occurrence of a
given value. It can be used to find the first appearance of a letter
in a string. For PHP programmers, memchr is similar to strpos.

Example

// Allocate memory for a string
char *stringbuffer;
stringbuffer = malloc(1000);

sprintf(stringbuffer, "whatever");

// Search for first letter e
char* stringpointer;
stringpointer = memchr(stringbuffer, 'e',
strlen(stringbuffer));

// Print everything after first
// letter e if found, or show
// a message if not
if (stringpointer != NULL) {
 // This should print "ever"
 printf("%s", stringpointer);
}
else {
 printf("Character not found.");
}

// Release the memory again
free(stringbuffer);

See Also

sprintf, strncmp, strcmp

memcmp

Syntax

int memcmp(void *mem1, void *mem2, int n)

Arguments

mem1
The first memory block to compare

mem2
The second memory block, to be compared with mem1

n
The size (in bytes) of the memory blocks to compare

Return

Returns 0 if the two memory blocks are identical. Otherwise, it
returns a negative or positive integer depending on whether the
value of the data in mem1 is found to be "less than" or "greater
than" the value of the data in mem2.

Description

memcmp performs a byte-wise comparison of two memory
blocks, to determine if they contain exactly the same data.

See Also

memicmp, strncmp, strcmp

memcpy

Syntax

int memcpy(void *dest, void *src, int n)

Arguments

dest
The memory block to copy data to

src
The memory block that data will be copied from

n
The number of bytes to be copied

Return

Returns a pointer to the destination (dest) memory block.

Description

memcpy copies data from one block of memory to another, up to
the number of bytes given.

See Also

strncpy, strcpy, memmove

memicmp
UNIX-specific C function - not part of ANSI C

Syntax

int memicmp(void *mem1, void *mem2, int n)

Arguments

mem1
The first memory block to compare

mem2
The second memory block, to be compared with mem1

n
The size (in bytes) of the memory blocks to compare

Return

Returns 0 if the two memory blocks are identical. Otherwise, it
returns a negative or positive integer depending on whether the
value of the data in mem1 is found to be "less than" or "greater
than" the value of the data in mem2.

Description

memicmp performs a byte-wise and case insensitive comparison
of two memory blocks, to determine if they contain the same
string data.

Comment

On Microsoft systems, this function is usually called via _memicmp
instead (note the leading underscore).

See Also

memcmp, strcmp, strncmp, stricmp

memmove

Syntax

void *memmove(void *dest, void *src, int n);

Arguments

dest
The memory block to copy data to

src
The memory block that data will be copied from

n
The number of bytes to be copied

Return

Returns a pointer to the destination (dest) memory block.

Description

Despite the name, memmove copies data from one block of
memory to another, up to the number of bytes given. If the
memory blocks you are trying to copy overlap, it is better to use
memmove instead of memcpy, as memmove uses a temporary
buffer during the copy.

Comment

Be careful not to cause buffer overruns by copying more data
into the destination memory block than it can hold.

Example

// Allocate memory for the strings
char *dest = calloc(10, 1);
char *src = calloc(10, 1);

// Store initial string values
strcpy(dest, "oldstring");
strcpy(src, "newstring");

// Show before and after memmove
Info("Before memmove: dest = %s, src = %s", dest, src);
memmove(dest, src, 3);
Info("After memmove: dest = %s, src = %s", dest, src);

See Also

memcpy, strcpy, strncpy

memset

Syntax

void* memset(void *dest, int val, int n)

Arguments

dest
The memory block to copy data to

val
The value that all the bytes in the memory block will be set
to, up to the provided length

n
The number of bytes to be set

Return

Returns a pointer to the destination (dest) memory block.

Description

memset sets each byte in the memory block to the given
value/character, up to the number of bytes given.

Example

%fml

OnFilterStart: {

 // Allocate 1000 bytes of memory
 char* strbuffer;
 strbuffer = malloc(1000);

 // Fill the memory block with zeros
 memset(strbuffer, 0, 1000);

 // Set short lengths to a letter,
 // progressively overwriting them
 memset(strbuffer, 'e', 10);
 memset(strbuffer, 'D', 8);
 memset(strbuffer, 'c', 6);
 memset(strbuffer, 'B', 4);
 memset(strbuffer, 'a', 2);

 // Prints 'aaBBccDDee'
 printf("%s", strbuffer);

 // Release the memory again
 free(strbuffer);
 return true;
}

See Also

free, strncpy, strcpy, malloc

METAFILE

Syntax

ctl[n]: METAFILE(Class Specific Properties), Other
Properties

Description

The class METAFILE allows one to place a metafile in the dialog
window. By default, this user control is not actionable.

Class Specific Properties

CENTERIMAGE
Scales the image to original size and centers it within the
control.

NOTIFY
Makes the user control actionable and activates tooltip.

Other Properties

Val
Assigns a value to the image, but only when it is disabled.
(default = 0)

Comment

Once the metafile is actionable, its value definitions are lost. The
reason is that a user control returns a specific value and
overwrites (once the mouse button is clicked over the user
control) the user control's value.

Currently the windows metafile (.WMF) and enhanced metafile
(.EMF) formats are supported.

When standalone filters are created, metafiles are not embedded
by default. You can use the Embed: function to embed the icon
into the standalone filter file.

The image file should be present in the active directory or in any
of the directories set in the PATH or FM_PATH variables (check
your AUTOEXEC.BAT file).

Example

ctl[0]: METAFILE, Image="Airplane.wmf"
ctl[1]: METAFILE(MODALFRAME, NOTIFY),
Image="D:\\Graphics\\Button2.emf", Action=CANCEL

See Also

BITMAP, ICON, IMAGE

min

Syntax

int min(int a, int b)

Arguments

a
Any integer.

b
Any integer.

Return

The lower value of a and b.

Description

Returns the least of the two given values a and b.

A common use for min is to truncate a variable to a certain upper
boundary.

Example

int p = min(1, 2); // sets p to 1

See Also

add, fmin, max, sub

mix

Syntax

int mix(int a, int b, int n, int d)

Arguments

a
An integer value to be mixed in.

b
An integer value for the base value.

n
An integer value which controls the mixture.

d
An integer value for the range.

Return

An integer which is a mix of a into b, based on the position of n in
range [0,d].

Description

This function calculates how much of a will be mixed into b,
proportional to the position of n in the range from 0 to d. If n is
0, the value of b is returned, if n is equal to d, the value of a is
returned. For any values of n in between 0 and d, a proportional
value is calculated.

This version of the mix function maintains compatibility with the
algorithm used by Filter Factory plugins.

Example

%ffp

ctl(0): "Darken", range = (0, 100)

R = mix(0, r, ctl(0), 100)
G = mix(0, g, ctl(0), 100)
B = mix(0, b, ctl(0), 100)

See Also

scl, mix1, mix2

mix1

Syntax

int mix1(int a, int b, int n, int d)

Arguments

a
An integer value to be mixed in.

b
An integer value for the base value.

n
An integer value which controls the mixture.

d
An integer value for the range.

Return

An integer which is a mix of a into b, based on the position of n in
range [0,d].

Description

This function calculates how much of a will be mixed into b,
proportional to the position of n in the range from 0 to d. If n is
0, the value of b is returned, if n is equal to d, the value of a is
returned. For any values of n in between 0 and d, a proportional
value is calculated.

This version of the mix function uses a slightly different
algorithm, of the form (d != 0) ? b - (b - a)*n/d : 0;

Example

%ffp

ctl[0]: "Darken", Range=(0,100)
ctl[1]: COMBOBOX, "mix\nmix1\nmix2", Val=0, Size=(*,60)

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 switch(ctl(1)) {
 case 0:
 pset(x,y,z, mix(0, src(x,y,z), ctl(0), 100)
);
 break;
 case 1:
 pset(x,y,z, mix1(0, src(x,y,z), ctl(0), 100)
);
 break;
 case 2:
 pset(x,y,z, mix2(0, src(x,y,z), ctl(0), 100)
);
 break;
 default:
 pset(x,y,z, mix(0, src(x,y,z), ctl(0), 100)
);
 }
 }
 }
 }
 return true;
}

See Also

scl, mix, mix2

mix2

Syntax

int mix2(int a, int b, int n, int d)

Arguments

a
An integer value to be mixed in.

b
An integer value for the base value.

n
An integer value which controls the mixture.

d
An integer value for the range.

Return

An integer which is a mix of a into b, based on the position of n in
range [0,d].

Description

This function calculates how much of a will be mixed into b,
proportional to the position of n in the range from 0 to d. If n is
0, the value of b is returned, if n is equal to d, the value of a is
returned. For any values of n in between 0 and d, a proportional
value is calculated.

This version of the mix function uses a slightly different
algorithm, of the form: (d == 0) ? 0 : (b - a)*n >= 0 ? b - ((b
- a)*n*2 + d)/(2*d) : b + ((a - b)*n*2 + d)/(2*d) ;

Example

%ffp

ctl[0]: "Darken", Range=(0,100)
ctl[1]: COMBOBOX, "mix\nmix1\nmix2", Val=0, Size=(*,60)

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 switch(ctl(1)) {
 case 0:
 pset(x,y,z, mix(0, src(x,y,z), ctl(0), 100)
);
 break;
 case 1:
 pset(x,y,z, mix1(0, src(x,y,z), ctl(0), 100)
);
 break;
 case 2:
 pset(x,y,z, mix2(0, src(x,y,z), ctl(0), 100)
);
 break;
 default:
 pset(x,y,z, mix(0, src(x,y,z), ctl(0), 100)
);
 }
 }
 }
 }
 return true;
}

See Also

scl, mix, mix1

mkdir

Syntax

int mkdir(string path)

Arguments

path
The path of the folder you want to make/create.

Return

Returns 0 if the new directory was created successfully, -1
otherwise.

Description

Makes a directory/folder on the user's filesystem. Remember to
use double backslashes in the path.

Example

if (mkdir("c:\\abc\\mynewfolder") == 0) {
 msgBox(MB_OK, "Successful", "The folder was created
successfully.");
}
else msgBox(MB_OK | MB_ICONWARNING, "Error", "The folder
could not be created.");

See Also

getSpecialFolder, rmdir

modf

Syntax

double modf(double x, double * ipart)

Arguments

x
The floating point value to be split.

ipart
Pointer to a double which will store the integer part.

Return

Fractional part of x.

Description

Breaks x in two parts: the integer (stored in location pointed by
ipart) and the fraction (return value).

MODIFY

Syntax

ctl[n]: MODIFY(Class Specific Properties), Other Properties

Description

The class MODIFY helps you change certain properties of a user
control without touching the other properties. This is useful for
modifying predefined user controls such as the OK, Cancel, Logo
or Edit pushbuttons.

Example

ctl[CTL_OK]: MODIFY, "Apply"
//changes Text property from OK to Apply
ctl[CTL_EDIT]: MODIFY, Pos=(200,20), Size=(30,30)
//repositions and resizes Edit button

See Also

NONE

mouseOverWhenInvisible

Syntax

int mouseOverWhenInvisible (int t)

Arguments

t
Set it to 0 to disable event triggering for disabled or invisible
controls. Set it to 1 to enable event triggering for disabled or
invisible controls.

Return

Always returns 1.

Description

By default FME_MOUSEOVER and FME_MOUSEOUT events are
triggered even for disabled and invisible controls. This behaviour
can be quite undesirable in some cases. So using
mouseOverWhenInvisible(0) suppresses this behaviour and
doesn't trigger any events for invisible or disabled controls.
mouseOverWhenInvisible(1) activates the original behaviour
again.

Example

%ffp

ctl(0): STATICTEXT(mouseover), "Move the mouse pointer
over me",size=(150,*), disable//invisible
ctl(4): CHECKBOX, "mouseOverWhenInvisible", size=

(100,*),val=1

onCtl(n):{

 if (n==0)
 Info ("Event was triggered");

 if (n==4 && e==FME_CLICKED)
 mouseOverWhenInvisible(ctl(4));

 return false;
}

See Also

FME_MOUSEOVER, FME_MOUSEOUT

msgBox

Syntax

int msgBox(int level, string titleBarText, string
dialogText)

Arguments

level
The type of message box that you want to display.

titleBarText
The text that will appear in the title bar of the message box
window.

dialogText
The text that will appear in the dialog section of the message
box window.

Return

The ID of the button that the user clicked on (eg IDYES, IDNO,
IDCANCEL etc.)

Description

This function calls a message box with a user-defined title bar
text, a user-defined dialog text and at least one pushbutton,
which depends on the dialog level set. The following levels can be
set:

MB_ICONERROR Places an error icon in the message
box

MB_ICONQUESTION Places a YESNO question icon in the
message box

MB_ICONWARNING Places a warning sign icon in the
message box

MB_ICONINFORMATION Places an Info icon in the message
box

MB_OK Places one pushbutton: OK

MB_OKCANCEL Places two pushbuttons: OK and
Cancel

MB_ABORTRETRYIGNORE Places three pushbuttons: Abort,
Retry and Ignore

MB_YESNOCANCEL Places three pushbuttons: Yes, No
and Cancel

MB_YESNO Places two pushbuttons: Yes and No

MB_RETRYCANCEL Places two pushbuttons: Retry and
Cancel

MB_APPLMODAL Default: OK button, title bar and
dialog text

MB_SYSTEMMODAL Places a windows logo in the title
bar

These levels can be combined by adding the symbol | between
them. Note that the title bar text does not support escape
sequences nor substrings.

Example

msgBox (MB_YESNO, "Title bar text", "Dialog text");
msgBox (MB_ICONQUESTION | MB_YESNOCANCEL, "Poppy's
Filters Question", "Apply the filter?");
msgBox (MB_ICONINFORMATION | MB_SYSTEMMODAL | MB_OK,
"Filtermania", "This will last for hours");

See Also

Info, Warn, Error

msize

Syntax

int msize(int pointer)

Arguments

pointer
A pointer to a memory block

Return

The size of the given memory block in bytes.

Description

Gives the size of a dynamically allocated block of memory, given
only a pointer to that block of memory.

See Also

calloc, free

msk

Syntax

int msk(int x, int y)

Arguments

x
Horizontal coordinate of the requested mask pixel, starting
from the left at 0.

y
Vertical coordinate of the requested mask pixel, starting
from the top at 0.

Return

The mask value for the requested pixel in the range [0, 255]
(regardless of whether the color depth of the source image).

0 means the pixel is completely outside the selection mask, 255
means the pixel is completely inside the selection mask.

Description

Use this function to determine whether a pixel is inside, outside
or somewhere on the edge of the host application's selection
mask.

Comments

By default, FilterMeister automatically applies the selection mask
to pixels for the final render; you only need to check the mask to
render a correct preview inside FilterMeister. Nonetheless, if you

use a msk(..) == 0 check, you can increase performance by not
calculating pixels outside the selection mask.

Example

%ffp
SupportedModes:RGBMode

 ForEveryTile: {
 for (x = x_start; x < x_end; x++) {
 for (y = y_start; y < y_end; y++) {
 m = msk(x, y);
 if (m == 0)continue; //speed up

 for (z = 0; z < 3; z++) { //don't process alpha
 int s = src(x, y, z);
 if (doingProxy)
 pset(x, y, z, mix(255 - s, s, m, 255)); //if you
wish, apply mask on preview
 else
 pset(x, y, z, s); //the mask is applied after
pressing ok
 }//end for z
 }//end for y
 }//end for x
 return true;
 }//end ForEveryTile

See Also

haveMask

NONE

Syntax

ctl[n]: NONE

Description

The class NONE deletes a particular user control. This is useful
for deleting predefined user controls such as the OK, Cancel,
Logo or Edit pushbuttons.

Example

ctl[CTL_OK]: NONE //deletes OK pushbutton
ctl[CTL_EDIT]: NONE //deletes Edit pushbutton
ctl[CTL_CANCEL]: NONE //deletes Cancel pushbutton
ctl[CTL_LOGO]: NONE //deletes FM logo

See Also

MODIFY

OWNERDRAW

Syntax

ctl[n]: OWNERDRAW(Class Specific Properties), Other
Properties

Description

This user control is a simple rectangle you can colorize. Since it is
actionable, you can use it as a simple pushbutton. One possible
usage is the definition of an image map consisting of a dialog
background image and several OWNERDRAW user controls.

Other Properties

Color
Defines the background color of the user control. (default =
transparent)

Example

ctl[0]: OWNERDRAW, Color=Red, Size=(50,50)
ctl[1]: OWNERDRAW, Action=APPLY
ctl[2]: OWNERDRAW, Disabled, Val=5

Notes

If you wish to use an owner-drawn user control as a settings
control (where you can change the user control's value), you have
to disable it.

Comments

See the Control drawing functions for a list of all functions you
can use to draw to an OWNERDRAW control.

pget

Syntax

int pget(int x, int y, int z)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

z
The channel number to be retrieved for the pixel: 0->red, 1-
>green, 2->blue, 3->alpha.

Return

The integer value of the specified pixel for the specified channel,
in the output buffer.

Description

This function retrieves the value of a specified channel 'z' from
the image pixel at position (x,y) in the output buffer; in effect, it
serves a similar purpose to the src() function, but retrieves from
the output buffer rather than the source image. The coordinates
should usually be within the image, i.e. 0<=x<X and 0<=y<Y, while
the channel number z should be in the range 0 to 3 inclusive.
Channels 0, 1 and 2 are the red, green and blue channels
respectively for RGB image modes, while channel 3 is the alpha
(transparency) channel of an RGBA image and is valid only on a
Photoshop layer with transparency/opacity. Note that use of the

pget() function in the ForEveryTile handler forces FilterMeister to
handle the image as a single (and possibly large) tile.

Comments

How is pget different from src? src gets the pixel from the
original image while pget gets the pixel from the output buffer. At
the start of the filter the output buffer is the same as the original
image, which is why they seem identical. pget is useful for times
when you modify the output, but still need data from the original
image.

Example

// Shift the whole image one pixel left

%ffp

R,G,B: pget(x+1, y, z)

A: a

See Also

src, pset, tget, tset, t2get, t2set

pgetp

Syntax

int pgetp(int x, int y)

Arguments

x, y
Image coordinates

Return

Returns the pixel value at the specified image coordinates

Description

This function lets you read a whole pixel from the output buffer.
Unlike pget the returned value includes the values of all color
channels (including the transparency channel if one is available)
of the pixel. Using pgetp instead of pget takes only approximately
half as much time. To decode the individual color values from the
returned pixel value you have to use the Rval, Gval, Bval and Aval
functions. Currently only works with 8 bit images.

See Also

srcp, psetp, tgetp, tsetp, t2getp, t2setp, Rval, Gval, Bval and Aval

pgetr

Syntax

int pgetr(int d, int m, int z)

Arguments

d
An integer value for the 'direction' of a pixel.

m
An integer value for the 'magnitude' of a pixel.

z
The image channel of the pixel to return (eg 0 for red, 1 for
green, 2 for blue when in RGB mode)

Return

The value of the pixel channel z at polar coordinates [d,m] in the
output buffer.

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates. Polar
coordinates are expressed as [d,m], where 'd' represents the
'direction' to the pixel from the image's center point, and 'm' is
the 'magnitude' of the distance from the center. The pgetr()
function takes a pair of polar coordinates as arguments, and
returns the pixel value in channel z at those co-ordinates.

See Also

tgetr, c2d, c2m, r2x, r2y

phaseshift

Syntax

int phaseshift(int pixel, int intensity)

Arguments

pixel
The pixel color value to modify

intensity
The intensity of the phaseshift effect (range 0 to 512)

Return

The newly phase shifted pixel value.

Description

Applies a simple phase shift effect, adjusting the hue and colors in
the image. The stronger the phaseshift effect, the more
psychedelic the results.

Example

ctl[0]: "Phase Shift", Range=(0,512), Val=0

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 pset(x,y,z, phaseshift(src(x,y,z), ctl(0)));
 }
 }

 }
 return true;
}

See Also

blend, contrast, gamma, saturation, solarize

PixelsToHDBUs

Syntax

PixelsToHDBUs(int pixels)

Arguments

pixels
Number of pixels to convert to HDBUs

Description

Converts on-screen pixel measurement to HDBU (horizontal
dialog base units, the measurement by which FilterMeister
dialogs are constructed). Note that the result of this conversion
depends on the users' Windows installation and may vary.

Example

Info("Screensize in DBUs: %d x %d",
 PixelsToHDBUs(getDisplaySettings(1)),
 PixelsToVDBUs(getDisplaySettings(2)));

See Also

HDBUsToPixels, PixelsToVDBUs, VDBUsToPixels

PixelsToVDBUs

Syntax

PixelsToVDBUs(int pixels)

Arguments

pixels
Number of pixels to convert to VDBUs

Description

Converts on-screen pixel measurement to VDBU (vertical dialog
base units, the measurement by which FilterMeister dialogs are
constructed). Note that the result of this conversion depends on
the users' Windows installation and may vary.

Example

Info("Screensize in DBUs: %d x %d",
 PixelsToHDBUs(getDisplaySettings(1)),
 PixelsToVDBUs(getDisplaySettings(2)));

See Also

HDBUsToPixels, PixelsToHDBUs, VDBUsToPixels

planes

Definition

The planes variable contains the number of channels in the
image. This includes all color channels and any additional alpha
channels available. It returns the same value as the Z variable.

Example

int totalPlanes = planes;
int colorPlanesOnly = planesWithoutAlpha;
int alphaPlanes = planes - planesWithoutAlpha;

printf("Total channels/planes: %d\nColor planes only:
%d\nAlpha channels: %d", totalPlanes, colorPlanesOnly,
alphaPlanes);

See Also

planesWithoutAlpha, Z

planesWithoutAlpha

Syntax

int planesWithoutAlpha

Description

planesWithoutAlpha contains the number of image channels
without alpha channels. For example, an RGB image would return
3 planes, no matter how many alpha channels it also has, if any.
You can now calculate the number of available alpha channels by
subtracting planesWithoutAlpha from planes or Z.

Example

int totalPlanes = planes;
int colorPlanesOnly = planesWithoutAlpha;
int alphaPlanes = planes - planesWithoutAlpha;

printf("Total channels/planes: %d\nColor planes only:
%d\nAlpha channels: %d", totalPlanes, colorPlanesOnly,
alphaPlanes);

See Also

planes, Z

platformData

Syntax

int platformData

Description

Contains a value that is passed from the host application to the
plugin. Usually it is the window handle of the host application. In
most cases this value is the same for a certain application
running under a certain operating system (but not e.g. in Plugin
Commander Pro). So you can use it to detect under which
application and operating system your plugin is currently
running. This is often more reliable than using hostSig.

Example

%ffp

ForEveryTile:{

 switch (platformData){
 case 0x12ef68:
 strcpy (str0, "PhotoImpact 7 under Windows 2000");
 break;
 case 0x12ef3c:
 strcpy (str0, "PhotoImpact 8 under Windows 2000");
 break;
 case 0x97ac74:
 strcpy (str0, "Paint Shop Pro 7 under Windows
2000");
 break;
 case 0x12e554:

 strcpy (str0, "Paint Shop Pro 8 under Windows
2000");
 break;
 case 0x4b104e8:
 strcpy (str0, "Photoshop 7 under Windows 2000");
 break;
 default:
 strcpy (str0, "Something Unknown");
 break;
 }

 Info ("This plugin runs in %s", str0);
 return true;
}

See Also

hostSig

playSoundWave

Syntax

bool playSoundWave(string filepath)

Arguments

filepath
The filename of the sound file to play.

Return

Returns true if the file was played, false otherwise.

Description

Plays a sound asynchronously (ie the plug-in will continue while
the sound is playing). The function first tries finding the sound
file in the embedded plug-in resources, then tries searching the
usual system folders for the sound file.

Example

// Play a thank you sound when
// the user buys the plug-in
playSoundWave("snd\\thanks.wav");

See Also

playSoundWaveLoop, playSoundWaveSync

playSoundWaveLoop

Syntax

bool playSoundWaveLoop(string filepath)

Arguments

filepath
The filename of the sound file to play.

Return

Returns true if the file was played, false otherwise.

Description

Plays a sound file repeatedly. The plug-in will continue while the
sound is playing/looping. The function first tries finding the
sound file in the embedded plug-in resources, then tries
searching the usual system folders for the sound file.

Example

// Annoy the user by playing a
// song over and over again
playSoundWaveLoop("sound\\lambchop-
thisisthesongthatdoesntend.wav");

See Also

playSoundWave, playSoundWaveSync

playSoundWaveSync

Syntax

bool playSoundWaveSync(string filepath)

Arguments

filepath
The filename of the sound file to play.

Return

Returns true if the file was played, false otherwise.

Description

Plays a sound synchronously (ie the plug-in will stop all operation
until the sound has completed). The function first tries finding
the sound file in the embedded plug-in resources, then tries
searching the usual system folders for the sound file.

Example

// Play an alert sound that stops
// all operations temporarily
playSoundWaveSync("awooga.wav");

See Also

playSoundWave, playSoundWaveLoop

pointer_to_buffer

Syntax

int pointer_to_buffer(int buffer, int x, int y, int z)

Arguments

buffer
Set buffer=0 for the input buffer, buffer=1 for the first tile
buffer, buffer=2 for the second tile buffer and buffer=3 for
the output buffer

x
x-coordinate

y
y-coordinate

z
color channel

Return

Returns a pointer to the specified x-, y- and z-coordinates of the
specified buffer.

Description

The returned pointer can be used in conjunction with memcpy()
or memmove() to copy or move whole pixels or a whole image
row very quickly between the buffers or inside one buffer. Later
when FM will directly support pointers, this function can be used
to read or write image data much quicker. Please notice that the
input and output buffers aren't always allocated as one
continuous memory block. A new memory block might be

allocated for each row. So you have to use pointer_to_buffer()
for every new row. Currently works only for 8-bit images.

Example

%ffp

// Drag the slider to scroll the image vertically in the
preview!
ctl(0): "Move", Range=(-100,100), Val=0, track

ForEveryTile:
{
 setCtlRange(0,-(y_end-y_start),(y_end-y_start));

 for(y = y_start; y < y_end; ++y)
 memcpy (pointer_to_buffer(3,x_start,y,0) ,
pointer_to_buffer(0,x_start, egw(y_start,y_end-1,
y+ctl(0)) ,0) , (x_end-x_start)*3);

 return true;
}

See Also

memcpy, memmove

posterize

Syntax

int posterize(int pixel, int intensity)

Arguments

pixel
The pixel color value to modify

strength
The intensity of the posterize effect (range 0 to 255)

Return

The new posterized pixel value.

Description

Applies a simple posterize effect to reduce the number of colors
in an image. The stronger the posterize effect, the fewer colors in
the resulting image.

Example

ctl[0]: "Posterize", Range=(0,255), Val=255

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 pset(x,y,z, posterize(src(x,y,z), ctl(0)));
 }
 }

 }
 return true;
}

See Also

blend, contrast, gamma, saturation

pow

Syntax

double pow(double x, double y)

Arguments

x
The value to be raised to a power.

y
The power to which the value is raised.

Return

x raised to the power of y.

Description

Returns x raised to the power of y: x^^y^^

See Also

ipow, powi

powi

Syntax

double powi(double x, int y)

Arguments

x
The (double) value to be raised to a power.

y
The (integer) power to which the value is raised.

Return

x raised to the power of y.

Description

Returns x raised to the power of y: xy

Example

%fml

OnFilterStart:
{
 // This should give 2x2x2 = 8
 Info("powi(2.0, 3) gives %f", powi(2.0, 3));
}

See Also

pow, pow

printf

Syntax

int printf(string text, ...)

Arguments

text
The text to be displayed in a Message Box alert window.

Return

The number of characters written, not including the terminating
null character, or -1 if an error occurred.

Description

Writes a formatted string to a message box, using printf-style
formatting common to the C language.

Comments

Internally, FilterMeister's printf function is a wrapper around the
Visual Studio function [_vsnprintf] and the Win32 function
[MessageBox].

printf Format Specifiers

%% % symbol
%c A single character
%d A signed integer in decimal format
%f A double precision floating point number in decimal format

https://msdn.microsoft.com/en-us/library/aa273401(v=vs.60).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx

%i A signed integer
%o An unsigned integer in octal format
%s A string
%u An unsigned integer
%x An unsigned integer in lowercase hexadecimal format
%X An unsigned integer in uppercase hexadecimal format

Example

int version = 1;
strcpy(str0, "Plug-In Name");
strcpy(str1, "Company Name");
printf("You are running %s made by %s, version %d", str0,
str1, version);

See Also

msgBox, sprintf, snprintf

pset

Syntax

void pset(int x, int y, int z, int v)

Arguments

x
An integer pixel x-coordinate in the output buffer.

y
An integer pixel y-coordinate in the output buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the
output buffer; the pixel is at coordinates [x,y], and the channel to
be set is given by 'z' (0 = red, 1 = green, 2 = blue, and 3 = alpha).

Example

%ffp

ForEveryTile:
{
 for (y=y_start; y<y_end; ++y)
 {
 for (x=x_start; x<x_end; ++x)
 {

 for (z=0; z<Z; ++z)
 {
 // set all pixels white!
 pset(x, y, z, 255);
 }
 }
 }
 return true;
}

See Also

tset,t2set,pget

psetp

Syntax

int psetp(int x, int y, int val)

Arguments

x, y
Image coordinates

val
Pixel value that shall be stored

Return

Always returns a value of 1

Description

This function lets you write a whole pixel to the output buffer.
Using psetp instead of pset takes only approximately half as
much time. You have to use the RGB or RGBA function to create
a pixel value from individual color values. Make sure that the
individual color values lie between 0 and 255, otherwise you will
get a strange image effect when passing the pixel value to this
function. For details please have a look at the example below.
Currently only works with 8 bit images.

Example

%ffp

ctl(0): "Brightness", Size=(*,6), Range=(-300,300),
Val=100

ctl(2): CHECKBOX, "Use the faster srcp() and psetp()",
Size=(150,*), Val=0
ctl(10): STATICTEXT, pos=(*,60), fontcolor=red, Size=
(150,*)

ForEveryTile:{

 int c,r,g,b;
 int a=255;

 const int startclock = clock();
 int endclock;

 for (y=y_start; y < y_end; y++) {

 if (updateProgress(y,y_end)) abort();
 for (x=x_start; x < x_end; x++) {

 if (ctl(2)) {

 // Read a whole pixel
 c = srcp (x,y);

 // Explode it into the color values
 r = Rval(c); //c & 0xff;
 g = Gval(c); //c >> 8 & 0xff;
 b = Bval(c); //c >> 16 & 0xff;
 if (Z > 3) a = Aval(c); //c >> 24 & 0xff;

 // Adjust brightness
 r += ctl(0);
 g += ctl(0);
 b += ctl(0);
 if (Z > 3) a += ctl(0);

 // Makes sure that the color
 // values are in the right range,
 // otherwise we might get a
 // strange image result
 if (r < 0) r=0; else if (r > 255) r=255;
 if (g < 0) g=0; else if (g > 255) g=255;
 if (b < 0) b=0; else if (b > 255) b=255;
 if (Z > 3) { if (a < 0) a=0; else if (a > 255)
a=255;}

 // Write back the color values
 psetp (x,y, RGBA(r,g,b,a));

 } else {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);
 if (Z > 3) a = src(x,y,3);

 r += ctl(0);
 g += ctl(0);
 b += ctl(0);
 if (Z > 3) a += ctl(0);

 pset (x,y,0,r);
 pset (x,y,1,g);
 pset (x,y,2,b);
 if (Z > 3) pset (x,y,3,a);
 }
 }
 }

 endclock = clock() - startclock;
 setCtlTextv(10, "Render time needed: %d ms", endclock);

 // Display after applying effect to image
 // Should make speed difference more clear
 if (!doingProxy) Info ("Render time needed: %d ms",
endclock);

 return true;
}

See Also

set_psetp_mode, srcp, pgetp, tgetp, tsetp, t2getp, t2setp, RGB,
RGBA

psetr

Syntax

void psetr(int d, int m, int z, int v)

Arguments

d
An integer direction from the origin in the output buffer.

y
An integer magnitude from the origin in the output buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the
output buffer, using polar coordinates (rather than cartesian) to
address the pixel; the polar coordinates are relative to the image
center. The channel to be set is given by 'z' (0 = red, 1 = green, 2 =
blue, and 3 = alpha). NOTE: There is no guarantee that this
function is able to completely populate the plane - some pixels in
the output buffer may be unreachable because of rounding
errors.

Example

%ffp

ForEveryTile: {

 int d, m;

 for (d=0; d<1024; ++d) {
 for (m=0; m<256; m+=3) {
 for (z=0; z<Z; ++z) {
 psetr(d, m, z, 256);
 }
 }
 }

 return true;
}

See Also

tsetr, t2setr, pgetr

PUSHBUTTON

Syntax

ctl[n]: PUSHBUTTON(Class Specific Properties), Other
Properties

Description

Pushbuttons are usually involved in some dialog action. They can
be used not just for general actions such as applying or cancelling
a filter, but also for start/stop buttons when you animate the
preview window. A pushbutton control will return the value 1
when it has been pressed, and 0 when it hasn't.

Class Specific Properties

BOTTOM
Aligns the text label with the bottom of the pushbutton.

CENTER
Centers the text label within the pushbutton's text area.

FLAT
Flattens the pushbutton.

LEFT
Left-aligns the text label within the pushbutton's text area.

MULTILINE
Allows word-wrapping within the pushbutton's text area.

RIGHT
Right-aligns the text label within the pushbutton's text area.

TOP
Aligns the text label with the top of the pushbutton.

VCENTER
Vertically centers the text label within the pushbutton's text
area.

Other Properties

Text
Defines the text label on the button. (default = no text)

Comments

Tooltips may not always work with the PUSHBUTTON control,
due to a bug in some FilterMeister versions. They work on
Windows 98SE, but not on Windows 2000 or Windows XP.

Example

ctl[2]: PUSHBUTTON (MULTILINE), "Press this button if you
want to apply the filter", Size=(70,50), Action=APPLY

See Also

ctl

put

Syntax

int put(int data, int item)

Arguments

data
The integer value which is to be stored in the buffer.

item
Numeric identifier of an item in the buffer.

Return

The integer value which was stored in the buffer.

Description

FilterMeister has a small internal buffer of N_CELLS integer items
which can be accessed by means of the get and put functions.
They provide the simplest means for storaging integer data since
they require no variable to be declared.

Currently N_CELLS is 1024. It may increase in future versions of
FilterMeister, but it will never decrease. N_CELLS will always be a
power of 2.

By default, the items in the buffer are initialized to zero at the
end of the executing code block. Calling the cell_preserve(1)
function changes this behavior so the buffer values are stored
between separate handlers, making them ideal for transporting
information between them.

The put function takes two integer arguments. The first is the
value which will be stored in the buffer. The second is in the
range of 0 up to and including (N_CELLS - 1) and denotes the
position within the buffer in which to store the data.

The return value of the put function (rarely used) is the integer
value of the first argument.

Example

%ffp

OnFilterStart:
{
 put(10, 0);
 Info("The value of buffer position 0 is %d", get(0));
}

See Also

get, cell_preserve

putArray

Syntax

int putArray (int nr, int x, int y, int z, int val)

Arguments

nr
Number of the array. Values from 0 to 99 are accepted.

x, y, z
x, y, and z coordinates of a cell in the array. If you allocated a
one-dimensional array, set y and z to zero. If you allocated a
two-dimensional array, set z to zero.

val
Value that will be stored at the specified coordinates in the
array.

Return

Returns 0 for failure (invalid index nr, or invalid byte-size of
Array), and 1 for success.

Description

Lets you store a value in an array. When storing a value into an
Array with byte-size 1, the value will be clamped to the range
[0,255]. For an Array of byte-size 2, the value is clamped to
[0,65535]. If the byte-size is not 1, 2, or 4, a value of 0 is returned
to indicate failure.

Example

See allocArray

See Also

allocArray, freeArray, getArray, fgetArray, fputArray, fillArray,
ffillArray, getArrayDim, copyArray

putArrayString

Syntax

int putArrayString(int nr, int index, string str)

Arguments

nr
Number of the array to store the string in. Values from 0 to
99 are accepted.

index
The index/position number in the array where you want to
store the string

str
The string value to be stored

Return

Returns true / 1 if the string was stored successfully. Returns
false / 0 if the array is out of range, not allocated, or if the string
is too large to be stored in the array.

Description

Stores a string into an element of one of the built-in arrays.

Comment

Note that you must allocate space for the array first using the
allocArray function, otherwise these functions will fail.

Example

%ffp

ctl(0): combobox, "Harry\nJim\nSally", val=0,
action=preview, size=(*,200)

OnFilterStart:{

 // Allocate Array for storing 3 strings of max. 256
bytes length
 allocArray(0,3,256,0,1);

 // Store the Strings
 putArrayString (0,0, "Hello, Harry!");
 putArrayString (0,1, "Hello, Jimmy.");
 putArrayString (0,2, "Hello, Sally, old girl!");

 // Display
 Info ("%s", getArrayString(0,ctl(0)));

 freeArray(0);

 return false;
}

See Also

allocArray, getArrayString, freeArray

putc

Syntax

int putc(int c, int * fileptr)

Arguments

c
An integer containing a byte value.

fileptr
Pointer to a file opened using fopen.

Return

The value of c if successful, otherwise -1.

Description

Write a single byte, contained in variable c to the file referenced
by fileptr.

This function is equivalent to fputc but can be used in ways that
can corrupt fileptr. It is advised to always use fputc instead of
this function.

See Also

fopen, getc, fputc, fputs

putRegString

Syntax

int putRegString(int szString, int szValueName[,
varargs]...)

Arguments

szString
is the address of the string to be stored

szValueName
is the name of the string to be retrieved, and may contain
printf-style formatting codes as well as FM !-codes.

varargs
is a list of optional arguments used to perform printf-style
formatting on the szValueName string.

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid

ERROR_CANTOPEN registry key could not be
opened

ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on a
Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Stores a C-style character string in the Windows Registry.
Currently, only two types of registry roots are possible, identified
by the constants HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USER.

Comment

Note that this function does not work for REG_EXPAND_SZ
strings, which are a different data type to standard REG_SZ
strings.

Example

// Saves a title for your filter
// dialog box, and retrieves it
// on next invocation

// Save title for next time
putRegString("Filter #2", "Dialog title");

// Retrieve saved title
getRegString(str0, 256, "Dialog title");
if (strcmp(str0,"") == 0) {
 // Title is null or missing
 // so set a default title
 strcpy(str0, "Default title");
}
// Set title for filter dialog
setDialogText(str0);

See Also

getRegRoot, setRegPath, getRegString

quickFill

Syntax

int quickFill(int x, int y, int z, int buffer, int radius,
int xstart, int ystart, int xend, int yend)

Arguments

x, y, z
image coordinates and color channel.

buffer
Which image buffer to read values from: 0 = input buffer, 1=
tempbuffer1, 2 = tempbuffer2, 3 = output buffer, 10 = Array0,
11= Array1, 12 = Array2 and so on...

radius
The pixel values that lie in a radius around x,y on channel z
will be placed in the put/get cells. The maximum possible
radius is 32, because there are only 1024 put/get cells (32*32
= 1024). If you use a higher radius value, quickFill() will not
work.

xstart, ystart, xend, yend
The borders of the image buffer. You should use x_start,
y_start, x_end and y_end if you have set "isTileable = true".
Otherwise 0,0,X,Y.

Return

Returns 0 if there aren't enough put cells for storage, otherwise
returns 1.

Description

quickFill is meant for filling the put/get cells with values from
one of the image buffer or from an array. It is meant to be used in
connection with quickMedian to calculate the median value.

See Also

quickMedian

quickMedian

Syntax

int quickMedian(int low, int high)

Arguments

low
lowest put/get cell that contains values, usually zero.

high
highest put/get cell that contains values, usually calculated
as (radius*2+1) * (radius*2+1)

Return

The return value is the median value.

Description

Finds the median value within the given range of put/get cells.

Comment

Please notice that quickMedian() works fast for radius values
from 1 to 8, but above that it gets very slow. There are much
faster algorithms that use tables or histogram for calculating
median values with a high radius. There are also slightly faster
algorithms for medians with a radius of 1 or 2.

Example

%ffp
ctl(7): "Radius", Range=(1,15), Val=1, Page=1

ForEveryTile:
{
 int val, dim;
 for (y=y_start; y<y_end; y++)
 for (x=x_start; x<x_end; x++)
 for (z=0; z<3; z++) {
 quickFill(x, y, z, 0, ctl(7), 0, 0, X, Y);
 dim = ctl(7)*2 + 1;
 val = quickMedian(0, dim*dim - 1);
 pset(x, y, z, val);
 }
 return true;
}

See Also

quickFill

r2x

Syntax

int r2x(int d, int m)

Arguments

d
An integer value for the 'direction' of a pixel.

m
An integer value for the 'magnitude' of a pixel.

Return

An integer giving the cartesian x coordinate for the pixel whose
polar coordinates are [d,m].

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the image's center
point, and 'm' is the 'magnitude' of the distance from the center.
The r2x() function takes a pair of polar coordinates as arguments,
and returns the cartesian x coordinate of the corresponding
pixel.

See Also

c2d, c2m, r2y

r2y

Syntax

int r2y(int d, int m)

Arguments

d
An integer value for the 'direction' of a pixel.

m
An integer value for the 'magnitude' of a pixel.

Return

An integer giving the cartesian y coordinate for the pixel whose
polar coordinates are [d,m].

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates, and
provides a set of functions for conversion between the two
systems. Polar coordinates are expressed as [d,m], where 'd'
represents the 'direction' to the pixel from the image's center
point, and 'm' is the 'magnitude' of the distance from the center.
The r2y() function takes a pair of polar coordinates as arguments,
and returns the cartesian y coordinate of the corresponding
pixel.

See Also

c2d, c2m, r2x

RADIOBUTTON

Syntax

ctl[n]: RADIOBUTTON(Class Specific Properties), Other
Properties

Description

Sometimes the programmer wants to give the user the ability to
select one item from a small group of (usually more than two)
options. This can be easily done with radio buttons, list boxes and
combo boxes. When implementing radio buttons, the first radio
button is defined as the group start, while a groupbox sets the
group's end (see the example below). Do not forget to activate
one of the radio buttons with Val=1!

Class Specific Properties

BOTTOM
Aligns the radiobutton at the bottom of the checkbox's text
area.

FLAT
Creates a border around the radio button.

GROUP
Defines the beginning of the radio button group.

LEFTTEXT
Sets text to the left of the radio button.

MULTILINE
Allows word-wrapping within the pushbutton's text area.

PUSHLIKE
Causes the radiobutton to appear as a depressable
pushbutton.

RIGHTBUTTON

Sets text to the left of the radio button.
TOP

Aligns the radiobutton at the top of the checkbox's text area.
VCENTER

Vertically centers the text label within the radiobutton's text
area.

Other Properties

Text
Defines the text label next to the radio button. (default = no
text)

Val
Assigns a value to the radio button. (default = 0)

Color
Sets the text background color. (default = transparent)

FontColor
Sets the color of the text. (default = white)

Action
Sets the default action for the control. (default = NONE)

Comment

You do not need to visually "embrace" the radio buttons with the
groupbox. You can create an invisible groupbox and the group
items stay untouched.

Example

ctl[0]: RADIOBUTTON(GROUP), "Remove white", Val=1, Pos=
(210,20)
ctl[1]: RADIOBUTTON(MULTILINE, TOP), "Adjust contrast and
remove color", Pos=(210,30), Size=(70,20)
ctl[2]: GROUPBOX(GROUP, CENTER), "Test", Pos=(200,10),
Size=(90,40), Color=CadetBlue

Note that the first radio button is activated (value set to one) and
declared as the first radio button of the group by way of the
GROUP property. The second radio button is moved to the top
text line. The last user control, the groupbox, defines the end of
the group.

See Also

GROUPBOX

rand

Syntax

int rand()

Return

A random number between 0 and RAND_MAX

Description

Generates a pseudorandom number between 0 and RAND_MAX,
which at the time of writing is 32767. You can use the modulo
operator (%) to reduce the result to a defined range. You should
also call the srand function before first calling the rand function,
to ensure that the numbers do seem to be random and not
predefined.

Example

%ffp

// Sets each of the control values to a random
// value between 0 and 200.

ctl(0): "Red", range=(0, 200)
ctl(1): "Green", range=(0, 200)
ctl(2): "Blue", range=(0, 200)

onFilterStart: {

 srand(clock());
 setCtlVal(0, rand() % 200);

 setCtlVal(1, rand() % 200);
 setCtlVal(2, rand() % 200);

 return false;
}

See Also

srand, rst

realloc

Syntax

void* realloc(void* buffer, int size)

Arguments

buffer
A pointer to a previously allocated memory block.

size
The size of the memory to be reserved, measured in bytes.

Return

A pointer to the allocated memory.

Description

Resizes an amount of memory previously reserved by means of
calloc or malloc to size number of bytes whilst retaining any
information already in the buffer (so far as the new size specified
permits).

If the memory could be allocated, a pointer to the first element in
the reserved memory block is returned, memory may be moved
around so the previously used pointer should be considered
invalid after use in this function.

If the memory could not be allocated (i.e. due to memory
shortage or a high degree of memory fragmentation), a NULL
value is returned instead. Please note that should this happen,
the original memory block is left untouched and must be freed
manually.

When specifying a NULL pointer, this function works identical to
malloc.

When specifying a new size of 0, memory is effectively freed and
a NULL is returned since no memory is allocated.

Any memory reserved by use of this function must be manually
deallocated by means of the free function, failure to do so will
result in memory leakage and will ultimately crash the system.

Example

%ffp

OnFilterStart:
{
 // Allocate a string for 255 characters.
 char* buffer_1 = malloc(255);

 // We need some more memory, 512 characters will do.
 char* buffer_2 = realloc(buffer_1, 512);
 if(!buffer_2)
 free(buffer_1);

 free(buffer_2);
}

See Also

calloc, free, malloc

RECT

Syntax

ctl[n]: RECT(Class Specific Properties), Other Properties

Description

This user control class draws a rectangle in the dialog window. By
default, this user control is not actionable.

Class Specific Properties

BLACK
Defines the rectangle's background color as black. (default)

GRAY
Defines the rectangle's background color as gray.

NOTIFY
Makes the user control actionable and activates tooltip.

WHITE
Defines the rectangle's background color as white.

Other Properties

Val
Assigns a value to the frame, but only when it is disabled
(default = 0)

Example

ctl[0]: RECT(NOTIFY), Action=ABOUT
ctl[1]: RECT(GRAY), Val=231, Disabled

Notes

Once the rectangle user control is actionable, its value
definitions are lost. The reason is that an action returns a specific
value and overwrites (once the mouse button is clicked over the
user control) the user control's value.

refreshCtl

Syntax

int refreshCtl(int n)

Arguments

n
The control number

Return

If the function succeeds, the return value is nonzero. If the
function fails, the return value is zero.

Description

Redraws or updates a certain control.

See Also

lockWindow, refreshWindow, refreshRgn

refreshRgn

Syntax

int refreshRgn(region R)

Arguments

R
R is a region (see comments)

Return

If the function succeeds, the return value is nonzero. If the
function fails, the return value is zero.

Description

Redraws or updates a certain region.

Comment

"region" correspond to a particular internal Windows type or
object that might need to be better documented or defined. You
can't directly cast it to an integer, despite it behaving like an
integer.

Example

refreshRgn(createRectRgn(215, 30, 410, 250));

See Also

setDialogRegion, lockWindow, refreshWindow, refreshCtl

refreshWindow

Syntax

int refreshWindow(void)

Return

If the function succeeds, the return value is nonzero. If the
function fails, the return value is zero.

Description

Redraws or updates the filter dialog.

See Also

lockWindow, refreshCtl, refreshRgn

remove

Syntax

int remove(const char *pathname)

Arguments

pathname
The path to the filesystem entry to delete.

Return

0 if successful, otherwise -1.

Description

Deletes a file or directory from the filesystem by specifying the
path to that entry through the pathname argument.

If successful, 0 is returned, otherwise -1 is returned and an error
is set.

rename

Syntax

int rename(const char *old, const char *new)

Arguments

old
The current name of the filesystem entry.

new
The new name of the filesystem entry.

Return

0 if successful, otherwise -1.

Description

Renames a file or directory from the filesystem by specifying the
name and/or path to that entry through the old and new
arguments.

If successful, 0 is returned, otherwise -1 is returned and an error
is set.

You can use this function to rename files and directories or to
move files and subdirectories into other directories.

rewind

Syntax

void rewind(FILE * file)

Arguments

file
A pointer to the file that you are working with (obtained with
fopen).

Description

Rewinds the position indicator in the file back to the very
beginning of the file.

See Also

fopen, fread, fseek, fwrite, fclose

RGB

Syntax

int RGB(int r, int g, int b)

Arguments

r
Value for the red channel in the range 0 to 255 inclusive.

g
Value for the green channel in the range 0 to 255 inclusive.

b
Value for the blue channel in the range 0 to 255 inclusive.

Return

An integer representing the specified color as a 32-bit triple.

Description

This function can be used to construct color triples to be passed
to, for example, the functions that set dialog control colors.

Example

// Set the color of control number 2
setCtlColor(2, RGB(255,192,255));

See Also

RGBA, Aval, Bval, Gval, Rval

rgb2cmyk

Syntax

int rgb2cmyk(int r, int g, int b, int z)

Arguments

r
Red value

g
Green value

b
Blue value

z
Determines which value is returned. z=0 for C (Cyan), z=1 for
M (Magenta), z=2 for Y (Yellow) and z=3 for K (Black)

Return

Returns the C, M, Y, K value from 0 to 255 depending on the value
of z

Description

Lets you convert RGB color values to CMYK color values.

Example

%ffp

ctl(0): "Adjust C", Range=(-255,255), val=0
ctl(1): "Adjust M", Range=(-255,255), val=0
ctl(2): "Adjust Y", Range=(-255,255), val=0

ctl(3): "Adjust K", Range=(-255,255), val=0

ForEveryTile:{

 int r,g,b,cyan,mag,yel,k;

 for (y= y_start; y < y_end; y++) {

 if (updateProgress(y, y_end)) abort();

 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 cyan = rgb2cmyk(r,g,b,0);
 mag = rgb2cmyk(r,g,b,1);
 yel = rgb2cmyk(r,g,b,2);
 k = rgb2cmyk(r,g,b,3);

 // Do the CMYK adjustment
 cyan = cyan + ctl(0);
 mag = mag + ctl(1);
 yel = yel + ctl(2);
 k = k + ctl(3);

 pset(x, y, 0, cmyk2rgb(cyan,mag,yel,k,0));
 pset(x, y, 1, cmyk2rgb(cyan,mag,yel,k,1));
 pset(x, y, 2, cmyk2rgb(cyan,mag,yel,k,2));
 }
 }

 return true;
}

See Also

cmyk2rgb, hsl2rgb

rgb2hsl

Syntax

int rgb2hsl(int r, int g, int b, int z)

Arguments

r
Red value

g
Green value

b
Blue value

z
Determines which value is returned. z=0 for H (Hue), z=1 for
S (Saturation), z=2 for L (Lightness)

Return

Returns the H, S or L value from 0 to 255 depending on the value
of z

Description

Lets you convert RGB values to HSL values.

Example

%ffp

ctl(0): "Adjust H", Range=(-255,255), val=0
ctl(1): "Adjust S", Range=(-255,255), val=0
ctl(2): "Adjust L", Range=(-255,255), val=0

ForEveryTile:{

 int r,g,b,h,s,l;

 for (y= y_start; y < y_end; y++) {

 if (updateProgress(y, y_end)) abort();

 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 h = rgb2hsl (r,g,b,0);
 s = rgb2hsl (r,g,b,1);
 l = rgb2hsl (r,g,b,2);

 // Do the HSL adjustment
 h = h + ctl(0);
 s = s + ctl(1);
 l = l + ctl(2);

 pset(x, y, 0, hsl2rgb (h,s,l,0));
 pset(x, y, 1, hsl2rgb (h,s,l,1));
 pset(x, y, 2, hsl2rgb (h,s,l,2));
 }
 }

 return true;
}

See Also

hsl2rgb

rgb2iuv

Syntax

int rgb2iuv(int r, int g, int b, int z)

Arguments

r
Red value

g
Green value

b
Blue value

z
Determines which value is returned. z=0 for i, z=1 for u, z=2
for v

Return

Returns the i, u or v value depending on the value of z

Description

Lets you convert RGB values to YUV values.

Example

%ffp

ctl(0): "Y Adjust", Range=(-255,255), Val=0
ctl(1): "U Adjust", Range=(-255,255), Val=0
ctl(2): "V Adjust", Range=(-255,255), Val=0

ForEveryTile:
{
 int r,g,b,i,u,v;

 for (y = y_start; y < y_end; y++) {

 updateProgress(y,y_end);

 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 i = rgb2iuv(r,g,b,0) + ctl(0);
 u = rgb2iuv(r,g,b,1) + ctl(1);
 v = rgb2iuv(r,g,b,2) + ctl(2);

 r = iuv2rgb(i,u,v,0);
 g = iuv2rgb(i,u,v,1);
 b = iuv2rgb(i,u,v,2);

 pset(x, y, 0, r);
 pset(x, y, 1, g);
 pset(x, y, 2, b);

 }
 }

 return true;
}

See Also

iuv2rgb

rgb2lab

Syntax

int rgb2lab(int r, int g, int b, int z)

Arguments

r
Red value

g
Green value

b
Blue value

z
Determines which value is returned. z=0 for L, z=1 for a, z=2
for b

Return

Returns the L, a or b value from 0 to 255 depending on the value
of z

Description

Lets you convert RGB values to Lab values.

Example

%ffp

ctl(0): "L Adjust", Range=(-255,255), Val=0
ctl(1): "a Adjust", Range=(-255,255), Val=0
ctl(2): "b Adjust", Range=(-255,255), Val=0

ForEveryTile:{

 int r,g,b,l,a,b2;

 for (y= y_start; y < y_end; y++) {

 if (updateProgress(y, y_end)) abort();
 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 l = rgb2lab (r,g,b,0);
 a = rgb2lab (r,g,b,1);
 b2 = rgb2lab (r,g,b,2);

 // Do the Lab adjustment
 l = l + ctl(0);
 a = a + ctl(1);
 b2 = b2 + ctl(2);

 r = lab2rgb (l,a,b2,0);
 g = lab2rgb (l,a,b2,1);
 b = lab2rgb (l,a,b2,2);

 pset(x, y, 0, r);
 pset(x, y, 1, g);
 pset(x, y, 2, b);

 }
 }

 return true;
}

See Also

lab2rgb

rgb2ycbcr

Syntax

int rgb2ycbcr(int r, int g, int b, int z)

Arguments

r
Red value

g
Green value

b
Blue value

z
Determines which value is returned. z=0 for Y, z=1 for Cb,
z=2 for Cr

Return

Returns the Y, Cb or Cr value from 0 to 255 depending on the
value of z

Description

Lets you convert RGB values to YCbCr values.

Example

%ffp

ctl(0): "Y (Luminancy)", Range=(-255,255), Val=0
ctl(1): "Cb (Chroma Blue)", Range=(-255,255), Val=0
ctl(2): "Cr (Chroma Red)", Range=(-255,255), Val=0

ForEveryTile:{

 int r,g,b,i,cb,cr;

 for (y= y_start; y < y_end; y++) {

 if (updateProgress(y, y_end)) abort();

 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 i = rgb2ycbcr (r,g,b,0);
 cb = rgb2ycbcr (r,g,b,1);
 cr = rgb2ycbcr (r,g,b,2);

 // Do the adjustment
 i = i + ctl(0);
 cb = cb + ctl(1);
 cr = cr + ctl(2);

 pset(x, y, 0, ycbcr2rgb (i,cb,cr,0));
 pset(x, y, 1, ycbcr2rgb (i,cb,cr,1));
 pset(x, y, 2, ycbcr2rgb (i,cb,cr,2));

 }
 }

 return true;
}

See Also

ycbcr2rgb

RGBA

Syntax

int RGBA(int r, int g, int b, int a)

Arguments

r
Value for the red channel in the range 0 to 255 inclusive.

g
Value for the green channel in the range 0 to 255 inclusive.

b
Value for the blue channel in the range 0 to 255 inclusive.

a
Value for the alpha channel in the range 0 to 255 inclusive.

Return

An integer representing the specified color as a 32-bit quadruple.

Description

This function can be used to construct 32-bit color quadruples
from four 8-bit channel components.

See Also

RGB, Aval, Bval, Gval, Rval

rmdir

Syntax

int rmdir(string path)

Arguments

path
The path of the folder you want to remove.

Return

Returns 0 if the new directory was removed successfully, -1
otherwise.

Description

Removes a directory/folder from the user's filesystem. The folder
must already be empty. Remember to use double backslashes in
the path.

Example

if (rmdir("c:\\abc\\mynewfolder") == 0) {
 msgBox(MB_OK, "Successful", "The mynewfolder folder was
removed successfully.");
}
else msgBox(MB_OK | MB_ICONWARNING, "Error", "The folder
could not be removed.");

See Also

getSpecialFolder, mkdir, chdir

rnd

Syntax

int rnd(int a, int b)

Arguments

a
An integer value for the lower limit.

b
An integer value for the upper limit.

Return

A pseudorandom value between a and b.

Description

Returns a pseudorandom integer between a and b. If you need a
more random number, you should first "seed" the random value
with a call to srand first.

Example

%ffp

// This example generates random RGB pixel
// values each time that it is run.

OnFilterStart: {

 // We only call srand to seed the random
 // value once in order to make the

 // results more random. If we kept
 // calling srand(clock()) through our
 // code, we would end up with similar
 // results for each rand call.

 srand(clock());
 return true;
}

ForEveryPixel: {
 R = rnd(0, 255);
 G = rnd(0, 255);
 B = rnd(0, 255);
}

See Also

rand, srand

Comments

Since a call to srand should ideally be placed in the OnFilterStart
handler, rnd is not well suited for use in the RGB handler (unless
you're happy to get the same result each time you run your filter).
Try using the ForEveryPixel or ForEveryTile handlers instead.

round

Syntax

double round(double number)

Arguments

number
Any double or float number.

Return

The rounded value.

Description

Returns the value of number rounded to the nearest or even
integral value.

Example

%ffp

OnFilterStart:
{
 Info("Rounding 2.543 gives %f", round(2.543));
 Info("Rounding -2.500 gives %f", round(-2.500));
}

See Also

ceil, chop, floor, C Runtime Functions

rst

Syntax

int rst(int seed)

Arguments

seed
An integer seed value for the random number generator.

Return

Returns the seed value, after being modified internally by a
random value.

Description

Calling rst sets the pseudo-random number generator to a new
state which is a function of both the value of 'seed' and the
previous state of the pseudo-random number generator. The C
run-time library routine srand(1) is implicitly called at the start of
each filter run to set the pseudo-random number generator to a
fixed known state, so the result of each run with otherwise
identical parameters will generally produce exactly the same
result. If you want the result to be different on each run, then call
rst(seed) with some unpredictable value of 'seed' - e.g. call
rst(clock()) to seed the pseudo-random number generator
from the elapsed time clock; or call rst(ctl(k)) to seed the
pseudo-random number generator with the current value of
control k; etc.

See Also

rand, srand

Rval

Syntax

int Rval(int rgb)

Arguments

rgb
Either a 32-bit RGB triple or a 32-bit RGBA quadruple; in
either case, the red, green and blue channels are represented
as eight bit values, as is the alpha channel in the RGBA form.

Return

A value in the range 0 to 255 inclusive.

Description

The return value represents the value of the red channel,
extracted from the triple (or quadruple).

Example

red = Rval(fgColor); // Gives the red channel value from
the current foreground color

See Also

Aval, Bval, Gval

samplingSupport

Syntax

int samplingSupport

Description

Indicates whether the host supports non-1:1 sampling for the
proxy preview. 0 means no sampling support, 1 means integral
sampling support, and 2 means fractional sampling support.
Photoshop 3.0.1+ supports integral sampling steps; future
versions may support non-integral sampling steps.

saturation

Syntax

int saturation(int r, int g, int b, int z, int sat)

Arguments

r
The Red pixel color value

g
The Green pixel color value

b
The Blue pixel color value

z
The pixel channel that will be returned by the function: 0 for
red, 1 for green, 2 for blue.

sat
The amount of saturation to apply on a range of -500 to 500,
with 0 meaning no saturation adjustment. Negative values
desaturate the image.

Return

The new pixel color channel value after the saturation effect is
applied.

Description

Applies a simple saturation effect to a given RGB pixel value.

Example

ctl[0]: "Saturation", Range=(-500,500), Val=0

ForEveryTile: {
 int r, g, b;
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);
 for (z=0; z < 3; z++) {
 pset(x,y,z, saturation(r, g, b, z, ctl(0)));
 }
 }
 }
 return true;
}

See Also

blend, contrast, gamma, gray

scaleFactor

Syntax

int scaleFactor

Description

scaleFactor is an integer that defines the scale ratio (zoom factor)
of the image in the preview proxy window. You can use this value
to ensure your image looks correct at all zoom levels, or to help
you calculate the original image co-ordinates when a user clicks
on a pixel in the preview window. scaleFactor will be set to 1 at
100% zoom, 3 for 33% zoom, 5 for 20% and so on. Think of it as
the denominator in the scale ratio - a 50% zoom image is 1/2
size, so the scaleFactor is 2. A 20% zoom image is 1/5 the original
size, so the scaleFactor is 5 (and so on).

Example

%ffp

ctl(0): STATICTEXT, "Please right click on the preview to
set a cross.", size=(100,20)

OnCtl(n): {

 if (n == CTL_PREVIEW && e == FME_RIGHTCLICKED_DOWN) {
 j0 = getPreviewCoordX() * scaleFactor;
 j1 = getPreviewCoordY() * scaleFactor;
 doAction(CA_PREVIEW);
 }
 return false;

}

ForEveryTile: {

 int g, h, z, color;
 int PreviewX = j0/scaleFactor;
 int PreviewY = j1/scaleFactor;

 // Calculate color of the cross
 color = (src(PreviewX, PreviewY, 0) + src(PreviewX,
PreviewY, 1) + src(PreviewX, PreviewY, 2)) /3;
 if (color > 128 && color < 196) color=0;
 if (color > 64 && color < 128) color=255;
 else color = 255-color;

 // Display Cross
 if (doingProxy){
 for (z=0; z < Z; z++) {
 for (g=-7; g < 8; g++)
 if (g < -1 || g > 1) pset(PreviewX + g, PreviewY,
z, color);
 for (h=-7; h < 8; h++)
 if (h < -1 || h > 1) pset(PreviewX, PreviewY + h,
z, color);
 }
 }

 return true;
}

See Also

Constants, setZoom, getPreviewCoordX, getPreviewCoordY

scl

Syntax

int scl(int a, int il, int ih, int ol, int oh)

Arguments

a
An integer value for the 'A' value.

il
An integer value for the lower limit of the input range.

ih
An integer value for the higher limit of the input range.

ol
An integer value for the lower limit of the output range.

oh
An integer value for the higher limit of the output range.

Return

An integer in the range of [ol,oh].

Description

Scales value a from range [il,ih] to range [ol,oh].

Comments

If il and oh are 0, the following simple formula performs better:
result = a * oh / ih;

Example

%ffp

ctl(0): "Stretch", range = (0, 255)

R = scl(r, 0, 255, -ctl(0), 255 + ctl(0));
G = scl(g, 0, 255, -ctl(0), 255 + ctl(0));
B = scl(b, 0, 255, -ctl(0), 255 + ctl(0));

See Also

mix

SCROLLBAR

Syntax

ctl[n]: SCROLLBAR(Class Specific Properties), Other
Properties

Description

In contrast to the STANDARD control, using the SCROLLBAR
control will invoke a scrollbar without text and edit control.

Class Specific Properties

HORZ
Changes scrollbar orientation to horizontal. (default)

VERT
Changes scrollbar orientation to vertical.

Other Properties

Divisor
Sets the divisor for the text box. (default = 1)

Gamma
Sets the gamma for what position in the slider corresponds
to a given value. (default = 150?)

Line
Sets the left/right button jump unit. (default = 1)

NoTrack
Prevents the preview window updating when dragging the
scrollbar's handle. (default)

Page
Sets the scrollbar paging jump unit. (default = 10)

Range

Sets the numerical range the scrollbar can return. (default =
(0, 255))

Track
Updates the preview window when dragging the scrollbar's
handle.

Val
Initializes the scrollbar's value. (default = 0)

Example

ctl[0]: SCROLLBAR(MODALFRAME, HORZ), Val=10, Disable
ctl[2]: SCROLLBAR(VERT), Range=(-10,10), Val=0, Track

See Also

STANDARD

scrollPreview

Syntax

static int scrollPreview(int mode, int ox, int oy)

Arguments

mode
Set to 0 for relative mode and 1 for absolute mode

ox, oy
For relative mode, horizontal and vertical offset in pixel
units. For absolute mode, the coordinates of the center of
the preview.

Description

Scrolls the preview image (the part of the image displayed in the
preview window) into the new position. Scrolling can be relative
to current position or absolute.

Warning: Only use scrollPreview() in the OnCtl and OnFilterStart
handlers, otherwise you will get some unwanted effects in the
preview! Calling it several times in a loop also causes redraw
problems. But if works fine if only used for moving the image in
the preview to a certain position, if followed by
doAction(CA_PREVIEW) .

This function only work if the image is larger than the preview. If
the image is fully displayed in the preview, this function has no
effect.

Example

scrollPreview(0, 100, 100) - scroll the preview image 100
pixels down and to the right

scrollPreview(0, -100, -100) - scroll the preview image 100
pixels up and to the left

scrollPreview(1, 0, 0) - display the top left corner of the image
in the preview

scrollPreview(1, 200, 200) - center the preview image at the
coordinate (200,200)

scrollPreview(1, X/2, Y/2) - display the center of the image in
the preview

See Also

setZoom, scaleFactor

set_array_mode

Syntax

bool set_array_mode (int mode)

Arguments

mode
Determines the default Array allocation mode. Set it to 1 to
allocate Arrays using the host application's buffer allocation
API, if any (this is the default). Set it to 0 to allocate Arrays
from the C runtime heap (this is the fallback case).

Return

Returns true if the requested allocation mode was set, or false if
the request could not be honored (e.g., if the host application
does not support the buffer allocation API). In the latter case, FM
falls back to case 0 (using malloc and free).

Description

If the host application provides a buffer allocation API, it is
usually more effective to use this API instead of the basic C
runtime heap allocation API, since the host application is able to
coordinate FM's buffer allocation requests with its own memory
allocation needs.

If FM allocates Arrays from the C runtime heap, either because
the host application provides no buffer allocation API or because
the filter calls set_array_mode(0), then be aware that FM may fail
to allocate an Array, even if the host application has allocated
more memory to itself than is necessary.

Example

if (set_array_mode(1)) {
 Info("Using host application buffer allocation API.");
}
else {
 Warn("Unable to use host buffer allocation. Using
malloc/free instead.");
}

See Also

allocArray, allocArrayPad, freeArray, getArray, putArray,
copyArray, malloc, free

set_bitdepth_mode

Syntax

void set_bitdepth_mode(int mode)

Arguments

mode
Integer which can take only two values: 8 or 16

Description

Setting mode to 16 will make the rgb2hsl, hsl2rgb and other color
conversion function treat the passed color values as 16bit color
values.

Setting mode to 8 will activate the default behaviour of these
functions.

Comments

16 bits mode means that values are in 0 to 32768 range.

set_edge_mode

Syntax

int set_edge_mode(int mode)

Arguments

mode
Set to 0 for a repeating edge, 1 for a black border around the
image, 2 to wrap around the edges of the image to the other
side, 3 to mirror the edges of the image.

Return

False / zero if the mode value is out of range (less than 0 or
greater than 4). True otherwise.

Description

Sets how the plug-in should behave when accessing pixels
beyond the edges of the image (ie whether the plug-in should
show those pixels as black, mirror the edge, or wrap around to
the other side of the image).

Example

%ffp

ctl(0): "Edge Mode", Range=(0,3), val=0
ctl(1): "Image Offset", Range=(0,100), val=30

ForEveryTile:{

 int r, g, b, offset;

 set_edge_mode(ctl(0));
 offset = ctl(1);

 for (y= y_start; y < y_end; y++) {

 if (updateProgress(y, y_end)) abort();

 for (x = x_start; x < x_end; x++) {

 r = src(x-offset, y-offset, 0);
 g = src(x-offset, y-offset, 1);
 b = src(x-offset, y-offset, 2);

 pset(x, y, 0, r);
 pset(x, y, 1, g);
 pset(x, y, 2, b);
 }
 }

 return true;
}

See Also

src, pget

set_psetp_mode

Syntax

void set_psetp_mode(n)

Arguments

n
Set n to 1, if you want to be able to set alpha to 0 with psetp.
Set n to 0 to restore default behavior again.

Description

By default, you can't set the alpha channel to zero with psetp.
This is an intended behavior, that allows to use psetp function in
conjuction with RGB function without messing up alpha channel (
i.e psetp(x,y,RGB(r,g,b))). To cancel this behavior, just do the
instruction set_psetp_mode(1).

Example

%ffp
SupportedModes:RGBMode

// The default color is orange,
// but you can change it with
// sliders

ctl[0]: "R value", Range=(0,255), Val=255
ctl[1]: "G value", Range=(0,255), Val=128
ctl[2]: "B value", Range=(0,255), Val=0

ForEveryTile: {

 int color;

 // Check if alpha channel available
 if (Z<4) {
 Info("This plug-in needs to "
 "be applied to a layer to "
 "achieve the effect");
 return true;
 }

 //------- the important line
 set_psetp_mode(1);

 for(y=y_start; y<y_end; y++) {
 for(x=x_start; x<x_end; x++) {

 // Chess board pattern
 if(((x%100)<50) ^ ((y%100)<50)) {
 a=255;
 } else {
 a=0;
 }
 color = RGBA(ctl(0), ctl(1), ctl(2), a);
 psetp(x,y,color);

 } // end for x
 } // end for y

 return true;

} // end ForEveryTile

See Also

psetp, srcp, pgetp, RGB, RGBA

setBitmap

Syntax

int setBitmap(int x, int y, char * name)

Arguments

x
The horizontal coordinate at which to draw the bitmap.

y
The vertical coordinate at which to draw the bitmap.

name
Null-terminated string with the name of the bitmap to use.
Can be either the name of an embedded resource or a
filename. Filenames may include directory information.

Return

Integer containing value TRUE if operation completed successful,
otherwise FALSE.

Description

Draw a specified bitmap on the current ownerdraw of buffer
canvas at the specified coordinates.

If coordinates are negative or the bitmap will not fit the canvas, it
is clipped at the edges of the canvas.

See Also

startSetPixel

setBitmapStretch

Syntax

int setBitmapStretch(int x, int y, int iName, int width, int
height)

Arguments

x
The horizontal coordinate at which to draw the bitmap.

y
The vertical coordinate at which to draw the bitmap.

name
Null-terminated string with the name of the bitmap to use.
Can be either the name of an embedded resource or a
filename. Filenames may include directory information.

width
The horizontal size to which the bitmap will be stretched or
shrunk.

height
The vertical size to which the bitmap will be stretched or
shrunk.

Return

Integer containing value TRUE if operation completed successful,
otherwise FALSE.

Description

Draw a stretched or shrunk (according to specified dimensions)
bitmap on the current ownerdraw of buffer canvas at the
specified coordinates.

If coordinates are negative or the bitmap will not fit the canvas, it
is clipped at the edges of the canvas.

See Also

setBitmap

setBitmapStretchTransparent

Syntax

int setBitmapStretchTransparent(int x, int y, int iName, int
width, int height, UINT color)

Arguments

x
The horizontal coordinate at which to draw the bitmap.

y
The vertical coordinate at which to draw the bitmap.

name
Null-terminated string with the name of the bitmap to use.
Can be either the name of an embedded resource or a
filename. Filenames may include directory information.

width
The horizontal size to which the bitmap will be stretched or
shrunk.

height
The vertical size to which the bitmap will be stretched or
shrunk.

color
The color (RGB) value of the transparent parts. Pixels in the
bitmap with this color will not be drawn.

Return

Integer containing value TRUE if operation completed successful,
otherwise FALSE.

Description

Draw a streched or shrunk (according to specified dimensions)
bitmap on the current ownerdraw of buffer canvas at the
specified coordinates, without drawing pixels of the specified
color.

If coordinates are negative or the bitmap will not fit the canvas, it
is clipped at the edges of the canvas.

See Also

RGB, RGBA, setBitmap

setBitmapTile

Syntax

int setBitmapTile(int x, int y, int iName, int tileWidth,
int tileHeight, int tileIndex)

Arguments

x
The horizontal coordinate at which to draw the bitmap.

y
The vertical coordinate at which to draw the bitmap.

name
Null-terminated string with the name of the bitmap to use.
Can be either the name of an embedded resource or a
filename. Filenames may include directory information.

tileWidth
Width of each tile in the bitmap.

tileHeight
Height of each tile in the bitmap.

tileIndex
Index number of the tile to be drawn, ordered along rows
then columns similar to this text.

Return

Integer containing value TRUE if operation completed successful,
otherwise FALSE.

Description

Draw part of the specified bitmap on the current ownerdraw of
buffer canvas at the specified coordinates.

The bitmap is divided in tiles of the specified dimensions which
are accessed using the tileIndex starting from 0. If you have 3
columns and 2 rows, a tileIndex of 3 will be the first column on
the second row. If the specified dimensions are such that they do
not fit the dimensions of the bitmap, no partial tiles are created.

If coordinates are negative or the bitmap will not fit the canvas, it
is clipped at the edges of the canvas.

tileWidth and tileHeight must be 1 or more, otherwise FALSE will
be returned.

If tileIndex is negative or beyond the number of available tiles,
nothing will be drawn.

See Also

startSetPixel

setBitmapTransparent

Syntax

int setBitmapTransparent(int x, int y, int iName, UINT
color)

Arguments

x
The horizontal coordinate at which to draw the bitmap.

y
The vertical coordinate at which to draw the bitmap.

name
Null-terminated string with the name of the bitmap to use.
Can be either the name of an embedded resource or a
filename. Filenames may include directory information.

color
The color (RGB) value of the transparent parts. Pixels in the
bitmap with this color will not be drawn.

Return

Integer containing value TRUE if operation completed successful,
otherwise FALSE.

Description

Draw a specified bitmap on the current ownerdraw of buffer
canvas at the specified coordinates, without drawing pixels of the
specified color.

If coordinates are negative or the bitmap will not fit the canvas, it
is clipped at the edges of the canvas.

See Also

RGB, RGBA, setBitmap

setClickDrag

Syntax

int setClickDrag(int b)

Arguments

b
0 for the default state. Only the
FME_RIGHTCLICKED_DOWN and
FME_RIGHTCLICKED_UP events will be triggered for
the preview.
1 for moving the image in the preview with the right
mouse button. Only the FME_LEFTCLICKED_DOWN
and FME_LEFTCLICKED_UP events will be triggered
for the preview.
2 for making it impossible to move the image in the
preview. All four mentioned events will be triggered for
the preview.

Return

Always true.

Description

This function lets you influence the way that the image is moved
in the preview. By default the user has to left click on the preview
and drag to move the image. But with this function you can also
specify that the user has to use the right mouse button or that
the image isn't movable at all. This feature is helpful if you want
to program a feature that e.g. lets the user draw something on
the preview with the left mouse button.

See Also

setZoom

setCtlAction

Syntax

setCtlAction(int index, int action)

Arguments

index
The index of the control that should perform this action.

action
The action you want the control to perform.

Description

Sets the default action for a control. You can set the action to any
of the following:

Symbolic
Constant Control Action

CA_PREVIEW Updates the proxy preview window.

CA_APPLY Applies the filter to the original source image and
exits the plug-in.

CA_CANCEL Exits the plug-in filter without modifying the
original source image.

CA_EDIT Enters or exits source code editing mode
(ignored in standalone filters).

CA_ABOUT Displays the ABOUT dialog box.
CA_RESET Resets all controls to their initial values.
CA_NONE Performs no action.
CA_SIZE Triggers a FME_SIZE (resize) event. That way you

don't need to duplicate your sizing code

anywhere else.

Example

// Set control 5 to apply the filter effect
setCtlAction(5, CA_APPLY);

See Also

doAction

setCtlAnchor

Syntax

int setCtlAnchor(int n, int flags)

Arguments

n
The number of the control to modify

flags
A combination of the anchoring constants ANCHOR_LEFT,
ANCHOR_RIGHT, ANCHOR_TOP and ANCHOR_BOTTOM.

Return

Returns false if the control number is out of range or not in use,
true otherwise.

Description

Changes how a control is repositioned when the dialog is resized.

Example

%fml
ctl[0]: STATICTEXT, Anchor=ANCHOR_TOP|ANCHOR_RIGHT,
Text="Resize window to see anchor effect", Size=(120,*)
ctl[4]: PUSHBUTTON, Text="Top", Size=(60,*)
ctl[5]: PUSHBUTTON, Text="Left", Size=(60,*)
ctl[6]: PUSHBUTTON, Text="Right", Size=(60,*)
ctl[7]: PUSHBUTTON, Text="Bottom", Size=(60,*)
ctl[8]: PUSHBUTTON, Text="Bottom Right", Size=(60,*)

setCtlAnchor(4, ANCHOR_TOP);
setCtlAnchor(5, ANCHOR_LEFT);
setCtlAnchor(6, ANCHOR_RIGHT);
setCtlAnchor(7, ANCHOR_BOTTOM);
setCtlAnchor(8, ANCHOR_RIGHT | ANCHOR_BOTTOM);

See Also

updateAnchors

setCtlBuddyStyle

Syntax

int setCtlBuddyStyle(int n, int buddy, int flags)

Arguments

n
The number of the STANDARD or SLIDER control to modify

buddy
Set to 1 to modify the edit box, or to 0 to modify the text
label

flags
The style flags to assign to this control.

Style Flags

ES_CENTER Centers the text in the edit box when
editing

ES_LEFT Left-aligns the text in the edit box when
editing

ES_LOWERCASE Forces all letters to be lowercase in the
editbox

ES_NUMBER Only allow numbers to be typed into the
editbox

ES_RIGHT Right-aligns the text in the edit box when
editing

ES_UPPERCASE Forces all letters to be uppercase in the
editbox

SS_BLACKFRAME Adds a black rectangle around the text label
SS_BLACKRECT Replaces the label with a blackbox

SS_ETCHEDFRAME Adds an etched frame to the text label
SS_ETCHEDHORZ Adds an etched frame to the text label
SS_GRAYFRAME Adds a gray rectangle around the text label
SS_GRAYRECT Replaces the label with a gray box
SS_WHITEFRAME Adds a white rectangle around the text label
SS_WHITERECT Replaces the label with a white box

WS_BORDER Enables the single border outline of the
editbox

Return

Returns false is control number n is out of range or unused.
Otherwise, returns the result of the internal SetWindowPos
function (true if succeeded, false otherwise).

Description

Changes the window style of the labels and edit boxes of a
STANDARD or SLIDER control.

Comment

This functions must be followed by refreshCtl or refreshWindow,
or the changes may not take effect.

Due to a bug, refreshCtl and refreshWindow may effect the text
label rendering differently.

Note that you cannot remove window styles with this function.
To remove a style, use clearCtlBuddyStyle.

Example

%ffp

ctl(0): PUSHBUTTON, "Make Changes", Size=(60, *)
ctl(1): PUSHBUTTON, "Clear Changes", Size=(60, *), Pos=
(*,20)
ctl[4]: STANDARD, "Example"

OnCtl(n):{

 if (n==0 && e==FME_CLICKED) {

 // Make editbox Uppercase & Right-aligned
 setCtlBuddyStyle(4, 1, WS_BORDER | ES_UPPERCASE |
ES_RIGHT);
 setCtlBuddyStyle(4, 2, SS_GRAYFRAME);
 refreshWindow();
 }

 if (n==1 && e==FME_CLICKED) {

 // Clear previously set styles
 clearCtlBuddyStyle(4, 1, WS_BORDER | ES_UPPERCASE |
ES_RIGHT);
 clearCtlBuddyStyle(4, 2, SS_GRAYFRAME);
 refreshWindow();
 }

 return false;
}

See Also

clearCtlBuddyStyle, refreshCtl, STANDARD, SLIDER

setCtlColor

Syntax

setCtlColor(int n, int color)

Arguments

n
The index of the user control whose color you wish to
change.

color
The color you wish to change the background of the control
to.

Description

This function changes the background color of the user control
with the index n. The color value can be an RGB triplet (as in
RGB(r,g,b)) or a COLOR function (as in COLOR(MediumOrchid)).
The following user controls support background coloring:
standard scrollbars, trackbars, checkboxes, radio buttons, group
boxes, owner draw controls, static text and icons. To set the
background color to transparent, set the value color to -1.

Example

setCtlColor(0, RGB(255,0,255)); //set background
color to magenta
setCtlColor(6, COLOR(X11.indianred)); //set background
color to indian red
setCtlColor(23, -1); //set background
color to transparent

See Also

chooseColor, getCtlColor, RGB, setCtlFontColor

setCtlDefVal

Syntax

int setCtlDefVal(int n, int val)

Arguments

n
The number of the control to set a default value for

val
The default value of the control

Return

Returns false if the control number is out of range or not in use,
true otherwise.

Description

Sets the default value for the control when the user double clicks
its text label.

Example

// DefVal sets the double-click default value
ctl[0]: STANDARD, "Control 0", DefVal=192

// Val sets the initial control value
ctl[1]: STANDARD, "Control 1", Val=0

OnFilterStart: {
 // Double click on the text of Control
 // 1 to set to the default value of 128

 setCtlDefVal(1, 128);
 return true;
}

See Also

setCtlVal

setCtlDivisor

Syntax

setCtlDivisor(int n, int v)

Arguments

n
The index of the user control whose value you want to
change

v
The value you want to assign to the user control

Description

This function changes the divisor of standard and scrollbar
controls

Example

setCtlDivisor(4, 10);
setCtlDivisor(5, 1);

See Also

setCtlGamma

setCtlEditSize

Syntax

int setCtlEditSize(int n, int w, int h)

Arguments

n
The number of the user control to resize

w
The new width of the edit box

h
The new height of the edit box

Return

Returns true (non-zero) if the given control n is a STANDARD or
SLIDER control, false (zero) otherwise.

Description

Resizes the text edit box to the right of a standard slider control.

Example

ctl[0]: STANDARD(HORZ), Text="Width", Val=20

OnCtl(n): {
 if (n == 0) {
 // Resize width of slider edit box
 setCtlEditSize(0, ctl(0), 10);
 }

 return false;
}

See Also

setCtlPos

setCtlFocus

Syntax

int setCtlFocus(int n)

Arguments

n
The number of the user control that will receive focus

Return

Returns false if the control number is out of range, a preview
control or not in use. Returns NULL if the parameter is otherwise
invalid. Otherwise, returns a handle to the user control.

Description

Sets the keyboard focus to the specified user control.

Example

%fml
ctl[0]: STANDARD(MOUSEOVER), Text="0", Val=0
ctl[1]: STANDARD(MOUSEOVER), Text="1", Val=75
ctl[2]: STANDARD(MOUSEOVER), Text="2", Val=150
ctl[3]: STANDARD(MOUSEOVER), Text="3", Val=225

OnCtl(n): {

 // When the mouse is moved over
 // one of the slider controls
 // it will light up with focus.

 if (e == FME_MOUSEOVER) {
 setCtlFocus(n);
 }
 return true;
}

setCtlFont

Syntax

int setCtlFont(int n, int i)

Arguments

n
The number of the control to set the font for

i
The index number of the font (from 0 - 31) to use, or -1 for
the default GUI font.

Return

Returns true if setting the font succeeded, false otherwise.

Description

Sets the font that the control will use when drawing text. The
font must first have been created/assigned using the createFont
function.

Comment

Behind the scenes, FilterMeister sends the [WM_SETFONT]
message to the control via the [SendMessage] Win32 function.

Example

// Make control #10 use the default Windows UI font
setCtlFont(10, -1);

https://docs.microsoft.com/en-us/windows/win32/winmsg/wm-setfont
https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-sendmessage

See Also

deleteFont

setCtlFontColor

Syntax

setCtlFontColor(int index, int color)

Arguments

index
The index of the control whose font color you wish to
change.

color
The color to change the font text to.

Description

This function changes the text color of the user control with the
given index. The color value can be an RGB triplet (as in
RGB(r,g,b)) or a COLOR function (as in
COLOR(DarkGreenCopper)). The following user controls support
text coloring: standard scrollbars, checkboxes, radio buttons,
group boxes and static text.

Example

//set text color to yellow
setCtlFontColor(0, RGB(255,255,0));

//set text color to "Money Green"
setCtlFontColor(0, COLOR(MoneyGreen));

//set text color to default
setCtlFontColor(0, -1);

See Also

setCtlColor

setCtlGamma

Syntax

int setCtlGamma(int num, int gamma)

Arguments

num
The index number of the user control you want to change

gamma
A value between 1 and 1000. Default = 100

Return

1 if the function completed correctly, 0 if the control is not a
STANDARD or SCROLLBAR control, -1 if the given control
number is not a valid control.

Description

Changes how the minimum and maximum values of a STANDARD
or SCROLLBAR control are spread out across the slider control.
Changing the gamma value is useful if you want the user to have
more precision at one end of the slider values - for example, a
blur where the user needs precision over small blur radius values
between 1 - 2 pixels, but the difference between very large radius
values doesn't matter so much. The default gamma value is 100,
where the control value changes linearly across the entire slider.

Example

%fml
ctl[3]: CHECKBOX, Text="Higher Gamma"

ctl[4]: STANDARD, Text="Control", gamma=50, divisor=10

OnCtl(n): {

 // If Checkbox value changed
 if (n == 3) {
 if (ctl(3) == true) {
 // Change slowly at start
 // quickly at end
 setCtlGamma(4, 500);
 }
 else {
 // Change quickly at start
 // slowly at end
 setCtlGamma(4, 50);
 }
 return true;
 }
 return false;
}

See Also

setCtlDivisor

setCtlImage

Syntax

setCtlImage(int ctl, string filename, string type)

Arguments

ctl
The number of the control whose image you want to change.

filename
The filename of the image you want to display.

type
The type of the image file you want to display (see below).

Description

setCtlImage changes the image displayed by an IMAGE,
METAFILE, BITMAP, or ICON control at run time. The type is a
single char constant that specifies the type of image file, as
follows:

'B' - bitmap file (.bmp)
'W' - Windows (old-style) metafile (.wmf)
'E' - enhanced metafile (.emf)
'I' - icon file (.ico)
'C' - cursor file (.cur)
'J' - JPEG file (.jpg)
'G' - GIF file (.gif)
'M' - MIG (mouse-ivo graphics) file (.mig)
'0' - unspecified file type

Example

// Sets control number 8 to display the progress5.bmp
// bitmap image, stored in the bitmaps subdirectory.
setCtlImage(8, "bitmaps\\progress5.bmp", 'B');

Comments

Only the 'B', 'W', 'E', and 'I' file types are recognized in the
current release. The remaining types are reserved for future
use.
If you have problems embedding an image in your plug-in,
check that you have used double backslashes (ie the \
character) in the pathname of the image file, everywhere
you use it. Although using forward slashes will work for
loading external image files, it will not work for embedded
images.
Also check that the filename you use in setCtlImage is the
same one that you embedded. If you use a full pathname
when embedding, you must also use the full pathname when
calling setCtlImage.

See Also

BITMAP, IMAGE, METAFILE, ICON

setCtlLineSize

Syntax

setCtlLineSize(int index, int size)

Arguments

index
The index of the control whose line jump unit you wish to
change.

size
The new size of the line jump unit.

Description

This function changes the line jump unit of a user control (e.g. the
amount the control value increases by when clicking on the
arrow buttons of a scrollbar). setCtlLineSize only applies to the
user controls STANDARD and SCROLLBAR.

Example

setCtlLineSize(0, 12);
setCtlLineSize(5, 2);

See Also

setCtlPageSize

setCtlOrder

Syntax

setCtlOrder(int n, int order)

Arguments

n
The index of the user control whose order you wish to
change.

order
The z-order you wish to set the control to.

Description

Sets the z-order of control n, ordered with 1 on top. Controls
with higher orders are moved down accordingly. (This is unlike
the usual definition of z-order, ordered with 1 on the bottom.)

Example

%ffp

Dialog: Size=(590,300)

ctl(1): Rect(Modalframe, White), pos=(380,50), size=(100,
100)
ctl(2): Rect(Modalframe, Gray), pos=(430,70), size=(100,
100)
ctl(3): Rect(Modalframe, Black), pos=(405,100), size=(100,
100)
ctl(4): Pushbutton, text="White", Pos=(386,283),
Anchor=ANCHOR_RIGHT|ANCHOR_BOTTOM

ctl(5): Pushbutton, text="Gray", Pos=(423,283),
Anchor=ANCHOR_RIGHT|ANCHOR_BOTTOM
ctl(6): Pushbutton, text="Black", Pos=(460,283),
Anchor=ANCHOR_RIGHT|ANCHOR_BOTTOM

OnCtl(n):
{

 if (n==4)
 {
 setCtlOrder(1, 1); // white on top
 }

 else if (n==5)
 {
 setCtlOrder(2, 1); // gray on top
 }

 else if (n==6)
 {
 setCtlOrder(3, 1); // black on top
 }

 return false;
}

ForEveryTile:
{

 return true;
}

setCtlPageSize

Syntax

setCtlPageSize(int index, int size)

Arguments

index
The index of the control whose line jump unit you wish to
change.

size
The new size of the page jump unit.

Description

This function changes the page jump unit of a user control (e.g.
the amount the control value changes by when clicking between
the arrow buttons and handle of a scrollbar). Applies only to the
user controls STANDARD, SCROLLBAR and TRACKBAR.

Example

setCtlPageSize(0, 12);
setCtlPageSize(5, 2);

See Also

setCtlLineSize

setCtlPixelPos

Syntax

setCtlPixelPos(int n, int x, int y, int w, int h)

Arguments

n
The number of the user control to resize/reposition

x
The horizontal co-ordinate of the user control's new position
(in pixels)

y
The vertical co-ordinate of the user control's new position
(in pixels)

w
The new width of the user control (in pixels)

h
The new height of the user control (in pixels)

Description

This function repositions and resizes the user control with the
index n. The values x, y represent the horizontal and vertical
position and w, h the width and height of the user control. Set
the value to -1 to use the default or last defined measurement.
With this function, all measurements are set in pixels - use
setCtlPos if you want to use Dialog Box Units / DBUs instead.

Example

setCtlPixelPos(4, 230, 20, 40, 30);
setCtlPixelPos(5, -1, -1, 50, -1); //change only the

width of user control 5

See Also

setCtlPos

setCtlPos

Syntax

setCtlPos(int n, int x, int y, int w, int h)

Arguments

n
The number of the user control to resize/reposition

x
The horizontal co-ordinate of the user control's new position
(in DBUs)

y
The vertical co-ordinate of the user control's new position
(in DBUs)

w
The new width of the user control (in DBUs)

h
The new height of the user control (in DBUs)

Description

This function repositions and resizes the user control with the
index n. The values x, y represent the horizontal and vertical
position and w, h the width and height of the user control. Set
the value to -1 to use the default or last defined measurement.
Don't forget that all measurements are set in DBUs (dialog box
units).

Example

setCtlPos(4, 230, 20, 40, 30);
setCtlPos(5, -1, -1, 50, -1); //change only the width of

user control 5

setCtlProperties

Syntax

int setCtlProperties(int n, int properties);

Arguments

n
The index of the control whose properties you wish to
change.

properties
The properties you wish to set in the control.

Return

Returns an integer with the previous properties before they were
changed by the function, or -1 if the control number is out of
range or if the control doesn't exist.

Description

This function sets the properties of a control. The properties to
be set should be specified in the second argument. To remove a
property from a control, use clearCtlProperties.

The following properties are available:

CTP_PREVIEWDRAG
CTP_MOUSEMOVE
CTP_DRAWITEM
CTP_CONTEXTMENU
CTP_MOUSEOVER
CTP_EXTENDEDUI

CTP_SIDE_MASK
CTP_RIGHT
CTP_LEFT
CTP_BOTTOM
CTP_TOP
CTP_ORIENT_MASK
CTP_VERT
CTP_HORZ
CTP_READONLY
CTP_TRACK

Example

// Enable tracking for this control
setCtlProperties(6, CTP_TRACK);

See Also

clearCtlProperties

setCtlRange

Syntax

setCtlRange(int n, int lo, int hi)

Arguments

n
The number of the control whose range you wish to change.

lo
The minimum range value

hi
The maximum range value

Description

This function changes the range of the user control with the
index n. You cannot change the range of all controls however -
for example, you cannot change the range of a checkbox, since it
would make no sense to do so.

Example

// Changes user control 0 to take values from -128 to 128.
setCtlRange(0, -128, 128);

// Changes user control 23 to take values from 5 to -5.
setCtlRange(23, 5, -5);

See Also

setCtlVal, setCtlDivisor

setCtlScripting

Syntax

int setCtlScripting(int n, int state)

Arguments

n
The control number that will have scripting
enabled/disabled

flags
Set to true / 1 to enable scripting, or false / 0 to disable
scripting.

Return

Returns false if the control number is out of range or not in use,
true otherwise.

Description

Enables and disables scripting for a user control.

Example

setCtlScripting(0, true);
setCtlScripting(1, false);

setCtlTab

Syntax

int setCtlTab(int n, int t, int s)

Arguments

n
The number of the control to add to a tab sheet

t
The number of the tab to add the control to

s
The number of the tabsheet to add the control to

Return

Returns false if control number n is out of range or not in use, or
if t is not a valid tab control. Returns true otherwise.

Description

Assigns a user control to a specific tab control & tab sheet on that
control.

Comment

Due to the design of the getCtlTab function, the tab control index
number should be 1 or higher. If the tab is control #0, you won't
be able to use getCtlTab to retrieve the sheet number the control
is on.

Example

%fml
ctl[1]: TAB, Text="page0\npage1", Pos=(250, 5), Size=(200,
100)
ctl[2]: STANDARD, Text="Slider", Pos=(280,*)
ctl[8]: PUSHBUTTON, Text="Move slider to other tab sheet",
Pos=(250, 120), Size=(150,*)

OnCtl(n): {
 if (n==8 && e==FME_CLICKED) {
 // If not already on page1,
 // move slider to page1
 if (getCtlTab(2, 1) != 1) {
 setCtlTab(2, 1, 1);
 }
 else {
 // Move slider to page0
 setCtlTab(2, 1, 0);
 }
 }
 return false;
}

See Also

getCtlTab, TAB

setCtlText

Syntax

setCtlText(int ctlnum, string text)

Arguments

ctlnum
The number of the control whose text you would like to
change.

text
A string containing the text you'd like the label text changed
to.

Description

This function changes the text property of the user control with
the index ctlnum. Note that not all user controls support text
strings. Also keep in mind that the user control has to be resized
if your text string exceeds the current size. Substrings and
escape sequences are allowed.

Example

setCtlText(1, "Rewrite me");
setCtlText(CTL_OK, "Apply"); //rename OK pushbutton text
to Apply

See Also

setCtlTextv

setCtlTextv

Syntax

setCtlTextv(int ctlnum, string textv)

Arguments

ctlnum
The number of the control whose text you want to change.

textv
A string containing the formatted text you want the label text
changed to.

Description

This function changes the text property of the user control with
the index ctlnum using formatted text. Note that not all user
controls support text strings. Also keep in mind that the user
control has to be resized if your text string exceeds the current
size. Substrings and escape sequences are allowed.

Example

setCtlTextv(1, "Rewrite me");

// Rename OK button to Apply
setCtlTextv(CTL_OK, "Apply");

See Also

setCtlText

setCtlTheme

Syntax

int setCtlTheme(int n, int state)

Arguments

n
The index number of the control to change

state
Theme state of the control. Set to -1 for the default theme, 0
to disable themes, or 1 to enable Windows Themes on this
control.

Return

Returns -1 if the control number is out of range or not in use,
otherwise it returns S_OK if the function succeeded, or an
HRESULT error code as returned by the SetWindowTheme
Win32 API function.

Description

Enables or disables Windows XP/Vista themes for a specific
control.

Comment

Note that this function may not work correctly at the moment.

Example

https://docs.microsoft.com/en-us/windows/win32/api/uxtheme/nf-uxtheme-setwindowtheme

%ffp

Category: "FilterMeister"
Author: "Harald Heim"
Title: "Theme Demo"
Filename: "ThemeDemo.8bf"
Copyright: "No Copyright"
Description:"Theme Demo"
Version: "1.0"
URL: "http://thepluginsite.com"
About: "!T \n!D\n"
 "!c\n!U"

Dialog: Theme=on

ctl(0): "Slider"//,theme=off
ctl(1): CHECKBOX, "Checkbox"//, color=COLOR_BTNFACE
ctl(2): STATICTEXT, "statictext"
ctl(3): PUSHBUTTON, "Button"//,theme=on
ctl(5): COMBOBOX, "Combobox", val=0

ctl(8): CHECKBOX, "Activate Theme"

OnCtl(n):{

 if (n==8 && e==FME_CLICKED){

 setDialogTheme(ctl(8));

 setCtlTheme(CTL_PROGRESS,ctl(8));
 setCtlTheme(CTL_ZOOM,ctl(8));

 setCtlTheme(CTL_FRAME,ctl(8));
 refreshCtl(CTL_FRAME);//Avoid Redraw problems

 setCtlTheme(0,ctl(8));
 setCtlTheme(1,ctl(8));
 setCtlTheme(2,ctl(8));
 setCtlTheme(3,ctl(8));
 setCtlTheme(5,ctl(8));

 //Info ("%d",getCtlColor(1));

 }

 return false;
}

setCtlThumbSize

Syntax

setCtlThumbSize(int n, int v)

Arguments

n
The index of the user control whose value you want to
change

v
The value you want to assign to the user control

Description

This function changes the setting of the thumb size of standard
and scrollbar controls.

Example

setCtlThumbSize(4, 10);
setCtlThumbSize(5, 1);

setCtlTicFreq

Syntax

int setCtlTicFreq(int n, int m)

Arguments

n
The index of the trackbar control to change.

m
The interval between tick marks.

Return

Returns true / 1 if the function succeed. Returns -1 if the control
number is out of range or not in use. Returns false if the control
is not a TRACKBAR or SLIDER control.

Description

Sets the frequency with which tick marks are displayed for slider
control n. For example, if the frequency is set to 2, a tick mark is
displayed for every other increment in the slider’s range. The
default setting for the frequency is 1 (that is, every increment in
the range is associated with a tick mark).

Comments

The SLIDER or TRACKBAR must have the AUTOTICKS style set
for this function to work.

Example

%fml
ctl[0]: TRACKBAR(AUTOTICKS), Range=(0,100)

OnFilterStart: {
 // Set a tick mark at 20, 40, 60 etc.
 setCtlTicFreq(0, 20);
 return true;
}

See Also

TRACKBAR, setCtlVal

setCtlToolTip

Syntax

setCtlToolTip(int index, string text, int style)

Arguments

index
The index of the control to display this ToolTip.

text
The text that the ToolTip should display. If this argument is
NULL or "", the ToolTip for this control is deleted.

style
Determines the style of the ToolTip.

Description

This function changes or deletes the tool tip text and style for the
user control with the given index.

The following styles can be set (and may be OR-ed together):

symbolic value numeric style
(default value) 0 Shows ToolTip under cursor.

TTF_CENTERTIP 0x0002 Shows ToolTip under user
control (centered).

TTF_RTLREADING 0x0004 Displays right-to-left text.
TTF_TRACK 0x0020 ToolTip tracks the cursor.

TTF_ABSOLUTE 0x0080
Causes the ToolTip window to be
displayed at specific coordinates.
(not yet implemented)

TTF_TRANSPARENT 0x0100 Causes the ToolTip control to
forward mouse event messages
to the parent window.

Comments

Tooltips may not always work, due to a bug in some FilterMeister
versions. They work on Windows 98SE, but not on Windows 2000
or Windows XP. This bug was fixed as of FilterMeister 1.0 Beta 8.7.

Example

setCtlToolTip(0, "Follow me!!", 0);
setCtlToolTip(5, "Center me!!", TTF_CENTERTIP);

See Also

setCtlColor

setCtlVal

Syntax

int setCtlVal(int n, int v)

Arguments

n
The index of the user control whose value you want to
change

v
The value you want to assign to the user control

Return

Returns the previous value of control n, or -1 if n is not a valid
control index.

Description

This function changes the current value of the user control with
the index n. Note that the value set has to be one within the user
control's range. Also note that not all user controls support value
settings (for example, you can only save values in a FRAME user
control when it is disabled).

Comment

setCtlVal() sets COMBOBOX control to 0 after 'OK'

A user has reported this problem. What happens is that
when you call setCtlVal() for a COMBOBOX or a LISTBOX,
FM not only attempts to set the control to the desired value,

but it also immediately reads back the value of the control
and stores the read-back value as the new value for the
control -- just in case, for example, you specify a value
greater than the maximum value of the control, in which
case the value is set to the maximum value instead.
Now, if you call setCtlVal() after 'Ok' has been pressed, the
actual control no longer exists (because the filter dialog has
already been destroyed). In this case, the read-back value is
0, and that is what is cached as the new current value of the
control, and what will be returned by a call to ctl or
getCtlVal.
Note that this control read-back occurs only for certain
controls (e.g., COMBOBOX and LISTBOX), and not for
others (such as sliders), so your results of calling setCtlVal()
in this situation will vary, but in general it is a good idea to
avoid calling setCtlVal() when the proxy preview dialog is
not being displayed.
Since this behavior, although "correct", is obviously not what
the Filter Designer might be expecting, we will change the
behavior of setCtlVal() in a future release of FM to always
cache the requested value of a control in this situation.
In the meantime, a suggested workaround is to use the
doingProxy flag to bypass the "bug" in such a situation, as
follows:

//avoid calling setCtlVal when no dialog is displayed
if (doingProxy) setCtlVal(n, v);

Example

setCtlVal(4, 30);
int iPrev = setCtlVal(5, 0);

See Also

ctl, getCtlVal

setDialogColor

Syntax

setDialogColor(int color)

Arguments

color
The color to set the background dialog window to.

Description

Changes the background color of the main filter window.

Example

// Set the background window color
// to deep blue
setDialogColor(RGB(0,0,96));

See Also

setDialogImage, setDialogGradient

setDialogDragMode

Syntax

int setDialogDragMode(int mode)

Arguments

mode
Integer setting the dialog drag mode

Return

Always returns true

Description

Sets how the filter dialog box can be dragged around the screen.
Valid values are 0 (title bar only), 1 (background and title) and 2
(dragging disabled). The default mode is title bar only (0).

Example

// Make the dialog draggable when
// clicking & holding on the
// background
setDialogDragMode(1);

See Also

setDialogImage, setDialogColor

setDialogEvent

Syntax

int setDialogEvent(int state)

Arguments

state
An integer of bitwise flags of events to enable. Set to 1 to
enable Init events, 2 to enable Cancel events, 4 to enable
Keypress events.

Return

Always returns true

Description

Enables certain dialog events to be processed / triggered in your
own FilterMeister code. You can use this function to handle when
keys are pressed while your filter dialog has user focus, to run
some code when the filter is first initialized, or to run some code
before the Cancel button/event is processed.

Comment

Note that setDialogEvent can only enable events, it cannot
remove / deregister / clear them. To clear an event hook, you
must use clearDialogEvent. (Behind the scenes, setDialogEvent
does a bitwise-OR operation against the internal event state
variable, to ensure that previously set bits enabling events remain
enabled.)

There appears to be a bug in Beta 9g and possibly newer
FilterMeister versions that prevents FME_CANCEL events from
being processed in code, even if you use this function to enabled
Cancel events.

Example

ctl[0]: CHECKBOX, "Enable Init Events"
ctl[1]: CHECKBOX, "Enable Cancel Events"
ctl[2]: CHECKBOX, "Enable Keypress Events"
ctl[4]: STATICTEXT, ""
ctl[5]: STATICTEXT, ""

OnCtl(n): {

 if (e == FME_INIT) {
 Info("The Init event was intercepted.");
 return true;
 }

 if (e == FME_CANCEL) {
 Info("Cancel event was intercepted!");
 return true;
 }

 if (e == FME_KEYDOWN) {
 printf("Key down!");
 return true;
 }

 if (n >= 0 && n <= 2 && e == FME_CLICKED) {

 int statevalue = ctl(0)*1 + ctl(1)*2 + ctl(2)*4;

 // Enable events we turned on
 setDialogEvent(statevalue);
 sprintf(str1, "setDialogEvent(%d) called",
statevalue);
 setCtlText(4, str1);

 // Clear events that we turned off
 clearDialogEvent(statevalue ^ 7); // Use bitwise XOR
 sprintf(str2, "clearDialogEvent(%d) called",
statevalue ^ 7);
 setCtlText(5, str2);
 }

 return false;
}

See Also

clearDialogEvent, FME_INIT, FME_CANCEL, FME_KEYDOWN,
FME_KEYUP

setDialogGradient

Syntax

setDialogGradient(int color1, int color2, int direction)

Arguments

color1
The color the background dialog color gradient starts at.

color2
The color the background color gradient fades to.

direction
The direction the gradient fades in: 0 for vertical gradient, 1
for horizontal

Description

Changes the background window color to a color gradient
between the first & second color, in either vertical or horizontal
manner.

Example

// Set the background window from
// bright blue to black
setDialogGradient(RGB(0,0,255), RGB(0,0,0), 0);

See Also

setDialogImage, setDialogColor

setDialogImage

Syntax

setDialogImage (string filename)

Arguments

filename
The full pathname of the image to be applied to the dialog
background.

Return

Returns non-zero if the function succeeds, zero if the function
fails.

Description

This function changes the image used in the filter dialog
background. Under some conditions, e.g. STRETCHED dialog
attribute, this could take some time to redraw - by using
lockWindow(1) in front of the code and lockWindow(0)
afterwards, the changes should only take a few milliseconds.

Example

setDialogImage("bitmaps\\myDialogBackground.bmp");

See Also

setDialogImageMode

setDialogImageMode

Syntax

setDialogImageMode(int mode, int stretchMode)

Arguments

mode
How the background image will be displayed. 0 for exact size,
1 for tiled, 2 for stretched-to-fit.

stretchmode
The algorithm used to stretch the bitmap to fit.

Description

Changes how the background image is displayed / resized in the
filter dialog background. Under some conditions, e.g.
STRETCHED dialog attribute, this could take some time to
redraw - by using lockWindow(1) in front of the code and
lockWindow(0) afterwards, the changes should only take a few
milliseconds.

The stretchMode parameter takes values from the Windows
SetStretchBltMode function (see the MSDN reference). There is
almost no good reason to use anything except the
COLORONCOLOR algorithm, which is the default, so it is best to
leave stretchMode set to 0 at all times.

Example

// Make the background image tiled / repeating
setDialogImageMode(1, 0);

https://msdn.microsoft.com/en-us/library/windows/desktop/dd145089(v=vs.85).aspx

// Make the background image stretch
// to fit the window
setDialogImageMode(2, 0);

See Also

setDialogImage

setDialogMinMax

Syntax

setDialogMinMax(int minX, int minY, int maxX, int maxY)

Arguments

minX
The minimum width (in DBUs) the filter dialog can be resized
to

minY
The minimum height (in DBUs) the filter dialog can be
resized to

maxX
The maximum width (in DBUs) the filter dialog can be resized
to

maxY
The maximum height (in DBUs) the filter dialog can be
resized to

Description

Sets the minimum and maximum width/height that the filter
dialog can be resized to.

Example

setDialogMinMax(getDialogWidth(), getDialogHeight(),
getDialogWidth(), getDialogHeight());

See Also

getDialogWidth, getDialogHeight

setDialogPos

Syntax

setDialogPos(bool fAbs, int x, int y, int w, int h)

Arguments

fAbs
A Boolean flag indicating whether x and y are absolute screen
coordinates (fAbs == true), or whether they are relative to the
client area (fAbs == false). If x == -1 and y == -1, then fAbs
indicates whether the dialog is to be centered within the
host client area (fAbs == false) or the working area of the
entire screen (fAbs == true).

x
The x coordinate of the upper-left corner of the filter dialog
(in DBUs).

y
The y coordinate of the upper-left corner of the filter dialog
(in DBUs).

w
The width of the filter dialog (in DBUs).

h
The height of the filter dialog (in DBUs).

Description

Sets the position and size of the filter dialog window. If fAbs is
true, x and y are absolute screen coordinates; otherwise, x and y
are relative to the upper-left corner of the client area in the host
application's main window. If x and y are set to -1, the dialog
window will be centered within the host client area or the
working area of the entire screen, depending on whether fAbs is

false or true, respectively. Otherwise, if either x or y is negative,
the position of the dialog will not be changed. If w or h is
negative, the size of the dialog window will not be changed.

All measurements are in dialog box units (DBUs).

Comments

The use of negative coordinates as flag values conflicts with
window coordinates in a multi-monitor environment. These flag
values may change in a future release.

Examples

/* Set dialog to absolute position (70, 80), width 120,
height 60... */
setDialogPos(true, 70, 80, 120, 60);

/* Change dialog width to 110, height to 50, without
moving upper-left corner... */
setDialogPos(false, -1, 0, 110, 50);

/* Center dialog within the host client area, without
changing the size... */
setDialogPos(false, -1, -1, -1, 0);

See Also

getDialogWidth, getDialogHeight, getDialogPos

setDialogRegion

Syntax

int setDialogRegion(region R)

Arguments

R
A visual region R of any shapes (see comments).

Return

Returns non-zero if the function succeeds, zero if the function
fails.

Description

Allows to reshape the dialog, by using a region. In the example
code below, the dialog becomes circular.

Comment

"region" correspond to a particular Windows type object that
might need to be better documented or defined. You can't
directly cast it to an integer, despite it behaving like an integer.

Example

%ffp
Dialog: Size=(300,300)
Dialog: Drag = Background
ctl[CTL_CANCEL]: PUSHBUTTON, Text="Cancel", Pos=(55,150),
size=(40,14)

ctl[CTL_OK]: PUSHBUTTON, Text="OK", Pos=(100,150), size=
(40,14)
ctl[CTL_PREVIEW]: Modify, Pos=(65,25), Size=(100,100)

OnFilterStart:{
 setDialogRegion(createCircularRgn(20, 20, 200));
 return false;
}

//------ Any effect
R:255-R
G:255-G
B:255-B

See Also

refreshRgn, createRectRgn, createRoundRectRgn,
createCircularRgn, createEllipticRgn, createPolyRgn

setDialogShowState

Syntax

bool setDialogShowState(int state)

Arguments

state
Defines how the dialog window should be shown.

Return

Returns false/zero if the dialog window was previously hidden,
true/non-zero otherwise.

Description

Can be used to show, hide, minimize and maximize the filter
dialog window. The values for the state parameter are equal to
those used in the [ShowWindow function documented at
MSDN].

Comment

This function is a lightweight wrapper around the Windows
Win32 ShowWindow function, [documented here on MSDN].

Example

// Hide the dialog window
setDialogShowState(0);
// SW_HIDE = 0

https://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx

// Show the dialog window again
setDialogShowState(5);
// SW_SHOW = 5

See Also

setDialogStyle

setDialogSizeGrip

Syntax

int setDialogSizeGrip(int state)

Arguments

state
Set to 0 to hide the size grip, 1 to enable and show the size
grip control.

Return

Always returns true.

Description

Enables or disables the resizing size grip control in the bottom
right-hand corner of the window.

Example

%fml

ctl(0): CHECKBOX, "Enable Size Grip"

OnCtl(n):{
 setDialogSizeGrip(ctl(0));
 return false;
}

setDialogStyle

Syntax

int setDialogStyle(int flags)

Arguments

flags
An integer of bitwise flags enabling different window styles

Return

Returns the previous settings of the flags as an integer if the
function succeeds. Returns zero if it failed.

Description

Sets (or enables) a particular style on a dialog. For example, you
can change the window border to a thin style using
WS_BORDER, or to a thick resizeable border using
WS_THICKFRAME. The [window style flags are defined at
MSDN]. You can clear these settings later using clearDialogStyle.

Comments

Internally, SetDialogStyle is a wrapper around the
[SetWindowLong Win32 API function] with GWL_STYLE as the
second parameter.

Example

// Change the border to a thin style
setDialogStyle(WS_BORDER);

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632600(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633591(v=vs.85).aspx

setDialogText

Syntax

bool setDialogText(string title)

Arguments

title
The text to be set as the title bar caption.

Return

Returns false/zero if the text couldn't be set, true/non-zero
otherwise.

Description

Sets the caption in the title bar of the filter dialog. You can also
use formatString compatible codes in the text parameter here.

Example

setDialogTitle("Your title bar title goes here.");

See Also

setDialogTextv, formatString, setCtlText

setDialogTextv

Syntax

bool setDialogTextv(string title, ...)

Arguments

title
The text to be set as the title bar caption.

Return

Returns false/zero if the text couldn't be set, true/non-zero
otherwise.

Description

Sets the caption in the title bar of the filter dialog. You can also
use printf-style formatting codes in the text parameter, which
are filled in by the additional parameters you provide.

Example

int version = 1;
strcpy(str0, "Plug-In Name");
strcpy(str1, "Company Name");
setDialogTitlev("%s made by %s, version %d", str0, str1,
version);

See Also

setDialogText, formatString, setCtlText

setFill

Syntax

int setFill(int color)

Arguments

color
An RGB a color value to fill the OWNERDRAW canvas

Return

Returns true if the function succeeded, false otherwise.

Description

Fills an OWNERDRAW control canvas with a solid color. setFill
must be surrounded with startSetPixel and endSetPixel controls,
which sets which control the fill command will apply to.

Examples

%fml
ctl[0]: STANDARD, "Red", Val=200
ctl[1]: STANDARD, "Green", Val=0
ctl[2]: STANDARD, "Blue", Val=0
ctl[4]: OWNERDRAW, Size=(100,100), Color=RGB(200,0,0)

OnCtl(n): {
 if (n >= 0 && n <= 2) {
 startSetPixel(4);
 setFill(RGB(ctl(0), ctl(1), ctl(2)));
 endSetPixel(0);

 }
 return false;
}

See Also

OWNERDRAW, startSetPixel, endSetPixel, RGB

setFont

Syntax

void setFont(int size, float rotation, bool bold, bool
italic, char* font)

Arguments

size
Horizontal offset from left edge in pixels.

rotation
Rotation angle in radians.

bold
Use a bold style.

italic
Use a italic style.

font
The name of the font. e.g. "Arial".

Description

Set the font to use for setText and setTextV.

Comment

This function is only for use when drawing on an OWNERDRAW
using the startSetPixel and endSetPixel functions. To change the
font associated with a control, use createFont and setCtlFont
instead.

Example

%ffp
ctl[0]: OWNERDRAW, Color=RGB(0,0,0), Size=(100,100)

OnFilterStart: {
 startSetPixel(0);
 setFont(17, 0, true, false, "Arial");
 setText(5, 0, RGB(255,255,255), TA_LEFT | TA_TOP,
"Player 1");
 setText(145, 0, RGB(255,255,255), TA_RIGHT | TA_TOP,
"Player 2");
 endSetPixel(0);

 return false;
}

See Also

setText, setTextV, startSetPixel, endSetPixel

setGamma

Syntax

void setGamma(double gamma)

Arguments

gamma
The gamma correction value.

Description

Precomputes a gamma correction table for gamma value gamma,
where gamma is a float or double value.

If this function is not called, calls to the gamma function will use
a gamma correction of 1.0, effectively no correction at all.

To be used in conjunction with the gamma function.

Example

setGamma(1.8);
for (x = x_start; x < x_end; x++) {
 for (y = y_start; y < y_end; y++) {
 for (z = 0; z < 3; z++) {
 pset(x, y, z, gamma(src(x, y, z)));
 }
 }
}

See Also

gamma

setLine

Syntax

void setLine(int x1, int y1, int x2, int y2, int color)

Arguments

x1
Horizontal offset from the left edge of the start of the line, in
pixels.

y1
Vertical offset from the top edge of the start of the line, in
pixels.

x2
Horizontal offset from the left edge of the end of the line, in
pixels.

y2
Vertical offset from the top edge of the end of the line, in
pixels.

color
Color value for the text.

Description

Render a line to an OWNERDRAW control.

Example

const int x = HDBUsToPixels(getCtlPos(n, 2));
const int y = VDBUsToPixels(getCtlPos(n, 1));
startSetPixel(3);
setLine(0, 0, x, y, COLOR(RED));
endSetPixel(3);

setPixel

Syntax

void setPixel(int x, int y, int color)

Arguments

x
X-coordinate (in pixels) of the relative position (originating
top-left at 0, 0) in the control where you want to draw a
pixel.

y
Y-coordinate (in pixels) of the relative position (originating
top-left at 0, 0) in the control where you want to draw a
pixel.

color
The RGB color value of the pixel to be drawn.

Description

Call setPixel to draw an individual pixel to an OWNERDRAW
control. First call startSetPixel, then use setPixel or any of the
Control drawing functions to draw to the control and finish with
a call to endSetPixel. This function is not for setting pixels in the
preview / final image; use pset for that instead.

See Also

startSetPixel, endSetPixel

setPreviewCursor

Syntax

setPreviewCursor(int n)

Arguments

n
An integer constant describing the cursor image to use.

Description

This function defines which standard Windows pointer to use
when the mouse is over the preview image. Suitable values for
'int n' are:

103 : Default Windows pointer (hand)
IDC_ARROW (32512) : Arrow pointer
IDC_IBEAM (32513) : I beam (text cursor)
IDC_WAIT (32514) : Busy pointer
IDC_CROSS (32515) : Cross
IDC_UPARROW (32516) : Up arrow
IDC_SIZE (32640) : Size pointer
IDC_HELP (32641) : pointer with question mark
IDC_SIZENWSE (32642) : NWSE diagonal arrow
IDC_SIZENESW (32643) : NESW diagonal arrow
IDC_SIZEWE (32644) : WE arrow
IDC_SIZENS (32645) : NS arrow
IDC_SIZEALL (32646) : Size all crossed-arrows
IDC_NO (32648) : NO pointer
IDC_APPSTARTING (32650) : Application Starting pointer
IDC_ICON (32651) : ? custom cursor?

Comments

Bear in mind that when using these cursors, cursors may differ
for different machines depending on the user's cursor
preferences and any themes running.

Example

onFilterStart:{
 // Sets preview cursor to
 // accurate cross-hair
 setPreviewCursor(32515);
 return false;
}

See Also

getPreviewCursor

setRectFill

Syntax

int setRectFill(int left, int top, int right, int bottom,
UINT color)

Arguments

left
The left co-ordinate of the rectangle to fill in the Ownerdraw
control

top
The top co-ordinate of the rectangle to fill in the Ownerdraw
control

right
The right co-ordinate of the rectangle to fill in the
Ownerdraw control

bottom
The bottom co-ordinate of the rectangle to fill in the
Ownerdraw control

color
An RGB value of the color you want to fill the defined
rectangle with

Return

to be completed

Description

setRectFill fills a rectangular section of an OWNERDRAW control
with a single color.

Example

ctl(1): OWNERDRAW(drawitem), pos=(300,50), size=(100, 100)
startSetPixel(1);
setRectFill(10, 20, 30, 40, RGB(255, 0, 0));
endSetPixel(1);

See Also

startSetPixel, setRectGradient, endSetPixel

setRectGradient

Syntax

int setRectGradient(int left, int top, int right, int
bottom, UINT color_TL, UINT color_BR, int horizontal)

Arguments

left
Left coordinate of the gradient box.

top
Top coordinate of the gradient box.

right
Right coordinate of the gradient box.

bottom
Bottom coordinate of the gradient box.

color_TL
Color to use for the top or left edge of the gradient.

color_BR
Color to use for the bottom or right edge of the gradient.

horizontal
Boolean value determining whether to draw a horizontal
(TRUE) or vertical (FALSE) gradient.

Return

Integer containing value TRUE if operation completed successful,
otherwise FALSE.

Description

Draw a smooth gradient, either horizontal or vertical on the
current ownerdraw or buffer canvas.

See Also

startSetPixel

setRegPath

Syntax

int setRegPath(char * path[, args...])

Arguments

path
A string specifying the path.

args
printf style arguments with FM extensions.

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid

ERROR_CANTOPEN registry key could not be
opened

ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on
a Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Sets the the current registry path.

By default, FM sets the registry path to "Software\\!O\\!C\\!t",
which will expand to "Software\\<Organization>\\<Filter-
category>\\<Filter-title>", as recommended by Microsoft.

Example

// Sets the registry key and path back to the FM default
values.
setRegRoot(HKEY_CURRENT_USER);
setRegPath("Software\\!O\\!C\\!t");

See Also

getRegPath, setRegRoot

setRegRoot

Syntax

int setRegRoot(int hKey)

Arguments

hKey
The section of the registry you want to access. hKey can be
set to either HKEY_LOCAL_MACHINE or
HKEY_CURRENT_USER, depending which section you need
to access.

Return

Returns ERROR_SUCCESS if the operation was successful,
otherwise it returns one of the following integer error codes:

ERROR_SUCCESS (==0) no error
ERROR_FILE_NOT_FOUND key or value name not found

ERROR_MORE_DATA buffer wasn't big enough (e.g.,
getRegString, getRegData)

ERROR_NO_MORE_ITEMS
index >= # of values or subkeys
(enumRegValue,
enumRegSubKey)

ERROR_INVALID_FUNCTION bad top-level key, etc

ERROR_INVALID_DATA wrong data type or size (or size
> 2048)

ERROR_BADDB registry database is corrupt
ERROR_BADKEY registry key is invalid
ERROR_CANTOPEN registry key could not be

opened
ERROR_CANTREAD registry key could not be read

ERROR_CANTWRITE registry key could not be
written

ERROR_REGISTRY_CORRUPT registry is corrupt
ERROR_REGISTRY_IO_FAILED input/output to registry failed

ERROR_KEY_DELETED
Illegal operation attempted on
a Registry key which has been
marked for deletion.

ERROR_KEY_HAS_CHILDREN cannot delete a key with
subkeys (Windows NT)

Description

Sets the the current registry root key.

Currently, only two types of registry roots are possible, identified
by the constants HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USER.

Example

// Sets the registry key and path back to the FM default
values.
setRegRoot(HKEY_CURRENT_USER);
setRegPath("Software\\!O\\!C\\!t");

See Also

getRegRoot, setRegPath

setText

Syntax

void setText(int x, int y, int color, int flags, char* text)

Arguments

x
Horizontal offset from left edge in pixels.

y
Vertical offset from top edge in pixels.

color
Color value for the text.

flags
Any combination of TA_* and VTA_* flags. Available
alignment constants are TA_BASELINE, TA_BOTTOM,
TA_TOP, TA_CENTER, TA_LEFT, TA_RIGHT,
TA_NOUPDATECP, TA_RTLREADING, TA_UPDATECP,
VTA_BASELINE, VTA_CENTER

text
The text to render.

Description

Render text to an ownerdraw control.

Example

const int x = HDBUsToPixels(getCtlPos(n, 2));
const int y = VDBUsToPixels(getCtlPos(n, 1));
startSetPixel(3);
setText(x / 2, 0, COLOR(WHITE), VTA_CENTER | TA_BASELINE,

getCtlText(n));
endSetPixel(3);

See Also

setFont, setTextv

setTextv

Syntax

void setTextv(int x, int y, int color, int flags, char*
text, ...)

Arguments

x
Horizontal offset from left edge in pixels.

y
Vertical offset from top edge in pixels.

color
Color value for the text.

flags
Any combination of TA_* and VTA_* flags. Available
alignment constants are TA_BASELINE, TA_BOTTOM,
TA_TOP, TA_CENTER, TA_LEFT, TA_RIGHT,
TA_NOUPDATECP, TA_RTLREADING, TA_UPDATECP,
VTA_BASELINE, VTA_CENTER

text
The text to render.

...
Additional variables to substitute for the formatting symbols
in text

Description

Renders formatted text to an ownerdraw control.

Example

%fml
ctl[0]: OWNERDRAW, color=RGBA(0,0,0,255), Size=(100,100)
ctl[7]: STANDARD, Text="Value", Pos=(*, 120)

ForEveryTile: {
 startSetPixel(0);
 setFill(RGB(0,0,88));
 setTextv(60, 25, RGB(0,0,0), VTA_CENTER | TA_BASELINE,
"Value is: %d", ctl(7));
 endSetPixel(0);
 return true;
}

See Also

setFont, setTextv

setTimerEvent

Syntax

int setTimerEvent(int nr, int t, int state)

Arguments

nr
Timer number. Values from 0 to 9 are allowed.

t
Time in milliseconds. Determines how often a timer is
triggered. For a value of 1000, the timer is triggered every
second.

state
Set to 1 for activated and to 0 for deactivated.

Return

If the function fails to create a timer, the return value is zero,
otherwise it is nonzero.

Description

Lets you activate or deactivate one of 10 available timers. When
activated, the timer will trigger an FME_TIMER event every t
milliseconds until the timer is deactivated again. The possibilities
are unlimited with this function. You can use it to e.g. program a
stopwatch (see Example below), display a flicker-free animation,
perform asynchronous and multi-threaded-like tasks, stop a
running calculation after a certain time period.

Example

%ffp

ctl(0): STATICTEXT, Size=(140,10)
ctl(1): STATICTEXT, Size=(140,10)
ctl(3): PUSHBUTTON, Text="Start", Size=(50,15)
ctl(5): PUSHBUTTON, Text="Stop", Size=(50,15)

OnCtl(n):
{
 int r;
 static int count0,count1;

 if (n==0 && e == FME_TIMER) {

 count0++;
 setCtlTextv (1,"%d ms",count0*10);

 } else if (n==1 && e == FME_TIMER) {

 count1++;
 setCtlTextv (0,"%d seconds",count1);

 } else if (n==3 && e == FME_CLICKED){

 setCtlText (0,"");
 setTimerEvent(0,10,1);
 setTimerEvent(1,1000,1);

 } else if (n==5 && e == FME_CLICKED){

 count0=count1=0;
 setTimerEvent(0,0,0);
 setTimerEvent(1,0,0);
 }

 return true;
}

setZoom

Syntax

static int setZoom (int n)

Arguments

n
Lets you specify a zoom factor from 1 to 16. A value of -888
sets the default zoom that shows the whole image.

Return

Returns true if it succeeded and false if the current zoom factor
is identical with the n parameter.

Description

Lets you set the zoom factor of the preview directly from code.
But be warned! Only use setZoom in the OnCtl and OnFilterStart
handlers, otherwise you will get some unwanted effects in the
preview!

Example 1

%ffp

ctl(1): "Preview Zoom", Range=(1,16)

OnFilterStart:{

 setZoom(ctl(1));

 return false;
}

Example 2

%ffp

// Puts a 100% button next to the
// default zoom control
ctl(100): PUSHBUTTON, "100%", Pos=(150,164), Size=(30,10)

OnCtl(n):
{
 // Clicking the button sets
 // the preview window to 100%
 if (n == 100) setZoom(1);
 return false;
}

See Also

scaleFactor

shellExec

Syntax

int shellExec(string verb, string filename, string params,
string defaultdir)

Arguments

verb
is the shell operation to be performed (e.g., "open", "print", or
"explore").

filename
the name of the file to be operated upon; it may be an
executable file, a document file, or a URL.

params
specifies any parameters to be passed to the application.

defaultdir
specifies the default directory for the execution of the
command.

Return

-1 if the operation is successful, or an integer error code
otherwise.

Description

Lets your filter execute a Windows shell command. shellExec is
useful if you want to run an external program, or to load a
webpage.

Comments

Any unneeded parameter may be set to NULL. If NULL is
specified for "Verb", the function opens the file or URL specified
by "Filename".

Example

// The following call will open file help.html from
// the filter's installation directory using the default
web browser:
shellExec("open", "help.html", NULL, filterInstallDir);

See Also

getWindowsVersion

sinbell

Syntax

int sinbell(int a)

Arguments

a
Input value from 0 to 1024

Return

Sine-bell-shaped output value from 0 to 1024

Description

This is a replacement for a gaussian function. It calculates very
quickly. Of course it is only an approximation of a gaussian
function.

Example

%ffp

R=G=B= sinbell(x*1024/X) > 1024 - y*1024/Y ? 0:255

sizeof

Syntax

int sizeof(type)

Arguments

type
The name of a built-in C language data type

Return

Returns the number of bytes required to store a variable of the
given data type.

Description

Gives the number of bytes needed to store a variable of the given
data type. This is useful when the size of a data type might vary
on different computers (eg a 64-bit int requires more bytes than
a 32-bit int).

Example

printf("Size of an int: %d bytes\nSize of a float: %d
bytes\nSize of a char: %d bytes", sizeof(int),
sizeof(float), sizeof(char));

sleep

Syntax

sleep(int milliseconds)

Arguments

milliseconds
The time in milliseconds for which the filter's execution
should be suspended.

Description

The sleep function delays execution of the filter for a specific
period of time. It is not advisable to use this function in the RGBA
or ForEveryPixel handlers, as this will cause the filter to pause for
every pixel in the image and slow program execution
dramatically.

Example

sleep(10); // Pauses execution for 10 milliseconds

SLIDER

Syntax

ctl[n]: SLIDER(Class Specific Properties), Other Properties

Description

The Slider user control is a trackbar that includes both a text
label and a numeric edit control.

Class Specific Properties

AUTOTICKS
Automatically sets tick marks according to range amount.

BOTH
Makes the thumb square and displays ticks on both sides of
the handle

BOTTOM
Shows tick marks along the bottom of the slider & changes
the thumb to point downwards (default)

HORZ
Changes scrollbar orientation to horizontal. (default)

LEFT
Changes orientation of handle and ticks.

NOTHUMB
Hides the thumb of the control (ie the trackbar/slider itself)

NOTICKS
Hides the tick marks on the slider control.

RIGHT
Changes orientation of handle and ticks (default with VERT
active)

TOP

Shows tick marks along the top of the slider & changes the
thumb to point upwards

TOPTIP
Displays the trackbar value as a tooltip beside the handle
when dragging the handle.

VERT
Changes scrollbar orientation to vertical.

Other Properties

Color
Sets the background color of the trackbar.

Divisor
Sets the divisor for the number displayed text box, eg 10 for
one decimal place. (default = 1)

EditStyleEx
Modifies the appearance of the control. Valid values include
'clientedge' and 'staticedge'.

FontColor
Sets the font color. (default = White)

NoEditBorder
Hides the border around the text edit portion of the control

Page
Sets the trackbar paging jump unit. (default = 10)

Range
Sets the numerical range the scrollbar can return. (default =
(0, 255))

Text
Defines the text label next to the scrollbar. (default = no text)

Val
Initializes the scrollbar's value. (default = 0)

Example

ctl[0]: SLIDER, Text="bottom, ticks", Val=rnd(0,255),
FontColor=Blue
ctl[1]: SLIDER(noticks), Text="bottom, noticks",
Divisor=10, Val=rnd(0,255)
ctl[2]: SLIDER(top, noticks), Text="top, noticks",
Val=rnd(0,255), NoEditBorder, EditStyleEx=staticedge
ctl[3]: SLIDER(both, noticks), Text="both, noticks",
Val=rnd(0,255)
ctl[4]: SLIDER(enableselrange, noticks),
Text="enableselrange, noticks", Size=(90,12),
Val=rnd(0,255), NoEditBorder, EditStyleEx=clientedge
ctl[5]: SLIDER(enableselrange, both, noticks),
Text="enableselrange, both, noticks", Size=(90,12),
Val=rnd(0,255)
ctl[6]: SLIDER(both, noticks), Text="larger, both,
noticks", Size=(90,12), Val=rnd(0,255)
ctl[7]: SLIDER(top, noticks), Text="larger, top, noticks",
Size=(90,12), Val=rnd(0,255)

Notes

It is best to set the Range before setting the Val. If the Val is set
first, it might be clipped by the default Range (0,255) before your
custom Range is set. If you set the Range first, you can set Val to
any value within that range.

See Also

STANDARD, SCROLLBAR, TRACKBAR

snprintf

Syntax

int snprintf(char * buffer, int n, const char * format, ...
)

Arguments

buffer
A pointer to the string buffer where the result will be stored

n
Maximum number of bytes to be written to the string buffer

format
Specifies the format of the resulting string, including types of
the variables to be included in the string.

Return

The number of characters written, not including the terminating
null character, or -1 if an error occurred.

Description

sprintf "prints" a formatted string (up to a defined length), except
instead of printing it to a terminal console, it stores the result in
a string variable. The formatting uses the printf-style formatting
common to the C language.

Comment

To prevent security problems and memory errors caused by
buffer overruns, you should always use this function (snprintf)
instead of sprintf.

printf Format Specifiers

%% % symbol
%c A single character
%d A signed integer in decimal format
%f A double precision floating point number in decimal format
%i A signed integer
%o An unsigned integer in octal format
%s A string
%u An unsigned integer
%x An unsigned integer in lowercase hexadecimal format
%X An unsigned integer in uppercase hexadecimal format

Example

int version = 1;
strcpy(str0, "Plug-In Name");
strcpy(str1, "Company Name");

// Note: size of str2 is 255 bytes
snprintf(str2, 255, "You are running %s made by %s,
version %d", str0, str1, version);

printf(str2);

See Also

formatString, printf, snprintf

solarize

Syntax

int solarize(int pixel, int s)

Arguments

pixel
The pixel color value to modify

s
Solarize intensity, range 0 to 255

Return

The newly solarized pixel value.

Description

Applies a simple solarize effect to the image, which morphs an
image with its inverse.

Example

ctl[0]: "Solarize", Range=(0,255), Val=0

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {
 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 pset(x,y,z, solarize(src(x,y,z), ctl(0)));
 }
 }
 }

 return true;
}

See Also

blend, contrast, gamma, saturation

sprintf

Syntax

int sprintf (char * buffer, const char * format, ...)

Arguments

buffer
A pointer to the string buffer where the result will be stored

format
Specifies the format of the resulting string, including types of
the variables to be included in the string.

Return

The number of characters written, not including the terminating
null character, or -1 if an error occurred.

Description

sprintf "prints" a formatted string, except instead of printing it to
a terminal console, it stores the result in a string variable. The
formatting uses the printf-style formatting common to the C
language.

Comment

For prevent security problems and memory errors caused by
buffer overruns, you should use the snprintf version of this
function instead. sprintf is included only for backwards
compatibility.

printf Format Specifiers

%% % symbol
%c A single character
%d A signed integer in decimal format
%f A double precision floating point number in decimal format
%i A signed integer
%o An unsigned integer in octal format
%s A string
%u An unsigned integer
%x An unsigned integer in lowercase hexadecimal format
%X An unsigned integer in uppercase hexadecimal format

Example

int version = 1;
strcpy(str0, "Plug-In Name");
strcpy(str1, "Company Name");
sprintf(str2, "You are running %s made by %s, version %d",
str0, str1, version);
printf(str2);

See Also

formatString, printf, snprintf

sqr

Syntax

int sqr(int x)

Arguments

x
Non-negative integer value.

Return

Square root of x.

Description

Returns the square root of parameter x.

sqrt

Syntax

double sqrt(double x)

Arguments

x
Non-negative floating point value.

Return

Square root of x.

Description

Returns the square root of parameter x.

srand

Syntax

void srand(int seed);

Arguments

seed
An integer value that seeds (initializes) the random number
generator.

Description

srand seeds the pseudo-random number generator functions. If
you seed the generator with a known value, the same sequence of
'random' numbers will occur each time after being seeded with
that value. This is useful if you need reproducible but still
random-seeming values (eg if you want a graphics effect preset
that seems to behave randomly, but can be shared with others to
give the same result).

Example

%fml
ctl[0]: STANDARD, Text="Seed Value"
ctl[5]: STATICTEXT, Text="", Size=(160,*)

// Changing slider zero gives
// different random numbers, but
// the same numbers each time for
// each specific setting

OnFilterStart: {

 srand(ctl(0));
 sprintf(str1, "'Random' values: %d, %d, %d", rand(),
rand(), rand());
 setCtlText(5, str1);
 return true;
}

See Also

rnd, rand

src

Syntax

int src(int x, int y, int z)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

z
The channel number to be retrieved for the pixel: 0->red, 1-
>green, 2->blue, 3->alpha.

Return

The integer value of the specified pixel for the specified channel.

Description

This function retrieves the value of a specified channel 'z' from
the image pixel at position (x,y). The coordinates should usually
be within the image, ie 0<=x<=X and 0<=y<=Y, while the channel
number z should be in the range 0 to 3 inclusive. Channels 0, 1
and 2 are the red, green and blue channels respectively, while
channel 3 is the alpha (transparency) channel and is valid only on
a layer. Note that use of the src() function in the ForEveryTile
handler forces FilterMeister to handle the image as a single (and
possibly large) tile.

Comments

How is pget different to src? src gets the pixel from the original
image while pget gets the pixel from the output buffer. At the
start of the filter the output buffer is the same as the original
image, which is why they seem identical. pget is useful for times
when you modify the output, but still need data from the original
image.

Example

// A very simple slight blur!

%ffp

R,G,B: (src(x - 1, y, z) + src(x + 1, y, z)) / 2

A: a

See Also

pget, tget, t2get, pset, tset, t2set

srcp

Syntax

int srcp(int x, int y)

Arguments

x, y
Image coordinates

Return

Returns the pixel value at the specified image coordinates

Description

This function lets you read a whole pixel from the source buffer.
Unlike src the returned value includes the values of all color
channels (including the transparency channel if one is available)
of the pixel. Using scrp instead of src takes only approximately
half as much time. To decode the individual color values from the
returned pixel value you have to use the Rval, Gval, Bval and Aval
functions. Currently only works with 8 bit images.

Example

%ffp

ctl(0): "Brightness", Size=(*,6), Range=(-300,300),
Val=100
ctl(2): CHECKBOX, "Use the faster srcp() and psetp()",
size=(150,*), Val=0
ctl(10): STATICTEXT, Pos=(*,60), Fontcolor = red, Size=

(150,*)

ForEveryTile: {

 int c,r,g,b;
 int a=255;

 const int startclock = clock();
 int endclock;

 for (y=y_start; y<y_end; y++) {

 if (updateProgress(y,y_end)) abort();

 for (x=x_start; x<x_end; x++) {

 if (ctl(2)) {

 // Read a whole pixel
 c = srcp (x,y);

 // Explode it into the
 // color values
 r = Rval(c); //c & 0xff;
 g = Gval(c); //c >> 8 & 0xff;
 b = Bval(c); //c >> 16 & 0xff;
 if (Z>3) a = Aval(c); //c >> 24 & 0xff;

 // Adjust brightness
 r += ctl(0);
 g += ctl(0);
 b += ctl(0);
 if (Z>3) a += ctl(0);

 // Makes sure that the
 // color values are in the
 // right range, otherwise
 // we might get a strange
 // image result
 if (r<0) r=0; else if (r>255) r=255;
 if (g<0) g=0; else if (g>255) g=255;
 if (b<0) b=0; else if (b>255) b=255;
 if (Z>3) {if (a<0) a=0; else if (a>255) a=255;}

 // Write back the color values
 psetp (x,y, RGBA(r,g,b,a));

 } else {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);
 if (Z>3) a = src(x,y,3);

 r += ctl(0);
 g += ctl(0);
 b += ctl(0);
 if (Z>3) a += ctl(0);

 pset (x,y,0,r);
 pset (x,y,1,g);
 pset (x,y,2,b);
 if (Z>3) pset (x,y,3,a);

 }

 }}

 endclock = clock() - startclock;
 setCtlTextv(10, "Render time needed: %d ms", endclock);

 // Display after applying the
 // effect to the image. Makes
 // the speed difference clearer
 if (!doingProxy) Info ("Render time needed: %d ms",
endclock);

 return true;
}

See Also

pgetp, psetp, tgetp, tsetp, t2getp, t2setp, Rval, Gval, Bval and
Aval

STANDARD

Syntax

ctl[n]: STANDARD(Class Specific Properties), Other
Properties

Description

The Standard user control is a simple scrollbar including a text
label and a numeric edit control. Standard is the default user
control type, so you don't need to specify the class property
STANDARD when defining the control.

Class Specific Properties

HORZ
Changes scrollbar orientation to horizontal. (default)

VERT
Changes scrollbar orientation to vertical.

Other Properties

Color
Sets the text background color. (default = CadetBlue)

FontColor
Sets the font color. (default = White)

Line
Sets the left/right button jump unit. (default = 1)

NoTrack
Prevents the preview window updating when dragging the
scrollbar's handle. (default)

Page
Sets the scrollbar paging jump unit. (default = 10)

Range
Sets the numerical range the scrollbar can return. (default =
(0, 255))

Text
Defines the text label next to the scrollbar. (default = no text)

Track
Updates the preview window when dragging the scrollbar's
handle.

Val
Initializes the scrollbar's value. (default = 0)

Example

ctl[0]: STANDARD(MODALFRAME, HORZ), Text="Plasma effect",
Val=10, Disable
ctl[2]: STANDARD(VERT), "Pressure", Range=(-10,10), Val=0,
Track
ctl[3]: "Threshold", Range=(-128,128), Val=0

Notes

It is best to set the Range before setting the Val. If the Val is set
first, it might be clipped by the default Range (0,255) before your
custom Range is set. If you set the Range first, you can set Val to
any value within that range.

See Also

SCROLLBAR

startSetPixel

Syntax

void startSetPixel(int ctl)

Arguments

ctl
The control number of the Ownerdraw control on which you
want to draw.

Description

Call startSetPixel before drawing on an OWNERDRAW control to
select which control you will be drawing on. Use setPixel to
change individual pixels or any of the Control drawing functions
to draw to the control. After finished drawing, you must call
endSetPixel to display the drawn control to the screen.

Example

ctl(1): OWNERDRAW(drawitem), Pos=(300,50), Size=(100, 100)
startSetPixel(1);
setRectFill(10, 20, 30, 40, RGB(255, 0, 0));
endSetPixel(1);

See Also

endSetPixel, setPixel, setRectFill

STATICTEXT

Syntax

ctl[n]: STATICTEXT(Class Specific Properties), Other
Properties

Description

This user control places a text in the dialog window. By default,
this user control is not actionable.

Class Specific Properties

CENTER
Center-aligns the text.

LEFT
Aligns the text to the left. (default)

LEFTNOWORDWRAP
Aligns the text to the left and deactivates word wrapping.

NOTIFY
Makes the user control actionable and activates tooltip.

RIGHT
Aligns the text to the right.

Other Properties

Text
Defines the text contents. (default = no text)

Val
Assigns a value to the static text. (default = 0)

Color
Defines the background color. (default = transparent)

FontColor

Defines the text color. (default = white)

Example

ctl[0]: STATICTEXT(MODALFRAME, NOTIFY), "OK", Color=Red,
FontColor=Yellow, Action=APPLY, Size=(60,30)
ctl[3]: STATICTEXT(CENTER), "Edit me"

Notes

Once the static text user control is actionable, its value
definitions are lost. The reason is that an action returns a specific
value and overwrites (once the mouse button is clicked over the
user control) the user control's value. For example, the action
APPLY returns a value of 2.

strcat

Syntax

char* strcat(char *dest, const char* src)

Arguments

dest
The destination string to which the source string is to be
appended.

src
The source string to be appended on the destination.

Return

A pointer to the resulting string, this is identical to the pointer
given as dest.

Description

Appends string src to the end of string dest, overwriting the
NULL character at the end of dest with the first character of src
up to and including its terminating NULL character.

String dest must have enough space reserved for the resulting
string, otherwise results may be undefined.

See Also

strncat

strchr

Syntax

char* strchr(const char* s, int c)

Arguments

s
A pointer to the string to be scanned.

c
The character to find.

Return

A pointer to the character found or NULL if the character was
not found.

Description

Find the first occurrence of the given character c in the string s
and return its location.

See Also

strrchr

strcmp
Included in ANSI C, C89, C99

Syntax

int strcmp(const char* s1, const char* s2)

Arguments

s1
Pointer to the string to compare.

s2
Pointer to the string to which the first string is compared to.

Return

An integer value indicating the result of the comparison.

Description

Compares two strings.

If a negative value is returned, string s1 is found to be less then
s2. If zero is returned, both strings are identical. If a value
positive and greater then zero is returned, string s1 is greater
than s2.

Characters are compared by their order in the ASCII character
map, this means numbers will be considered less then
alphabetical characters, likewise capitals are considered greater
than non-capitals.

See Also

C Runtime Functions, strncmp

stricmp
Microsoft-specific C function - not part of ANSI C

Syntax

int stricmp(const char* s1, const char* s2)

Arguments

s1
Pointer to the string to compare.

s2
Pointer to the string to which the first string is compared to.

Return

An integer value indicating the result of the comparison - less
than zero if s1 comes before s2, zero if the two strings are
identical, and greater than zero if s2 comes after s1.

Description

Compares two strings in a case insensitive manner. That is, both
strings are converted to lowercase before comparison.

If a negative value is returned, string s1 is found to be less then
s2. If zero is returned, both strings are identical. If a value
positive and greater then zero is returned, string s1 is greater
than s2.

Characters are compared by their order in the ASCII character
map. This means numbers will be considered less then
alphabetical characters.

Comment

If you are writing cross-platform compatible code, note that this
function is a Microsoft-specific extension in the Windows C
Runtime, and not a part of the Standard C language.

See Also

C Runtime Functions, strcmp, strncmp

strcpy

Syntax

char* strcpy(char* dest, const char* src)

Arguments

dest
The string to which the source string is to be copied.

src
The string which is to be copied to the destination string.

Return

A pointer to the destination string, identical to dest.

Description

Copies the entire string src to the string dest including the
trailing NULL character.

The string dest must be large enough to hold the string src,
otherwise results are undefined.

See Also

strncpy

strcspn

Syntax

int strcspn(const char* s, const char* reject)

Arguments

s
The string to scan.

reject
A string containing the characters to scan for.

Return

The length of the initial matching segment.

Description

Returns the length from the start of string s which does not
contain any of the characters specified in string reject.

See Also

strpbrk, strspn, strstr

strdate

Syntax

strdate(string text)

Arguments

text
String buffer that the current date will be stored in.

Description

This function retrieves the current date and converts it to the
string form 05/22/09.

Example

strdate(str0);

See Also

strtime

strdup

Syntax

char* strdup(const char* s)

Arguments

s
The string to be duplicated.

Return

Pointer to the new string.

Description

Duplicates the string s into a newly allocated memory location.

Since this function allocates memory, the newly created string
must at some point be destroyed by means of the free function.

strerror

Syntax

char* strerror(int errnum)

Arguments

errnum
The requested error number.

Return

A string describing the error.

Description

Return a string describing the specified error number errnum. If
the error number is not known, an unknown error string is
returned instead.

The string returned remains valid only until the next call to the
strerror function.

stripEllipsis

Syntax

char* stripEllipsis(char* s)

Arguments

s
The text that will have an ellipsis stripped.

Description

Returns string s with an ellipsis ("...") removed.

Example

%fml
ctl[2]: STATICTEXT, Text=""
ctl[4]: STATICTEXT, Text=""

OnFilterStart: {

 // Ellipsis is stripped
 strcpy(str0, "Waiting...");
 strcpy(str1, stripEllipsis(str0));
 setCtlText(2, str1);

 // Only last ellipsis is stripped
 strcpy(str3, "Still waiting...........");
 strcpy(str4, stripEllipsis(str3));
 setCtlText(4, str4);

 return true;
}

See Also

appendEllipsis, formatString

strlen

Syntax

int strlen(const char* s)

Arguments

s
The string of which to determine the length.

Return

An integer value indicating the length of s.

Description

Returns the length of string s excluding the trailing NULL
character.

strlwr

Syntax

char* strlwr(char* str)

Arguments

str
The string to change to lower case.

Return

A pointer to the modified string.

Description

Converts a string to lower case. Note that this function modifies
the original string.

See Also

strupr

strncat

Syntax

char* strncat(char *dest, const char* src, int n)

Arguments

dest
The destination string to which the source string is to be
appended.

src
The source string to be appended on the destination.

n
The number of characters from src to append.

Return

A pointer to the resulting string, this is identical to the pointer
given as dest.

Description

Appends the first n characters of string src to the end of string
dest, overwriting the NULL character at the end of dest with the
first character of src up to n characters or its terminating NULL
character is reached. If string src is longer than n characters, a
NULL character will also be added.

String dest must have enough space reserved for the resulting
string, otherwise results may be undefined.

See Also

strcat

strncmp

Syntax

int strncmp(const char* s1, const char* s2, int n)

Arguments

s1
Pointer to the string to compare.

s2
Pointer to the string to which the first string is compared to.

n
The maximum number of characters to compare.

Return

An integer value indicating the result of the comparison.

Description

Compares up to the first n characters of two strings.

If a negative value is returned, string s1 is found to be less then
s2. If zero is returned, both strings are identical. If a value
positive and greater then zero is returned, string s1 is greater
than s2.

Characters are compared by their order in the ASCII character
map, this means number will be considered less then alphabetical
characters, likewise capitals are considered greater than non-
capitals.

See Also

strcmp

strncpy

Syntax

char* strncpy(char* dest, const char* src, int n)

Arguments

dest
The string to which the source string is to be copied.

src
The string which is to be copied to the destination string.

n
The maximum number of characters to copy.

Return

A pointer to the destination string, identical to dest.

Description

Copies the first n characters of string src to the string dest
including the trailing NULL character.

If the copied characters do not include a trailing NULL character,
one will be added to the end.

The string dest must be large enough to hold the string src,
otherwise results are undefined.

See Also

strcpy

strnicmp

Syntax

int strnicmp(const char* s1, const char* s2, int n)

Arguments

s1
Pointer to the string to compare.

s2
Pointer to the string to which the first string is compared to.

n
The maximum number of characters to compare.

Return

An integer value indicating the result of the comparison.

Description

Compares up to the first n characters of two strings, without
regard for capitalization/case.

If a negative value is returned, string s1 is found to be less than
s2. If zero is returned, both strings are identical (ignoring case). If
a value positive and greater than zero is returned, string s1 is
greater than s2.

Characters are compared by their order in the ASCII character
map. This means digits will be considered less than alphabetical
characters; likewise, capitals are considered less than non-
capitals.

See Also

strcmp, strncmp

strnset

Syntax

string strnset(string str, int c, int n)

Arguments

str
The string to set

c
The character which the string is to be set to

n
The maximum number of characters in str to set

Return

A pointer to the new string.

Description

strnset sets at most n characters of string str to character c.

Example

int s = strcpy(&str0, "This is the message!");
s = strnset(s, 'X', 4);
Info("%s", s);

See Also

strset

strpbrk

Syntax

char* strpbrk(const char* s, const char* accept)

Arguments

s
The string to scan.

accept
A string containing characters to scan for in string s.

Return

Pointer to the first match found.

Description

Scans string s for the first occurrence of any of the characters
specified in string accept and returns NULL if none of the
characters were found or a pointer to the first character in s
found.

See Also

strcspn, strspn, strstr

strrchr

Syntax

char* strrchr(const char* s, int c)

Arguments

s
A pointer to the string to be scanned.

c
The character to find.

Return

A pointer to the character found or NULL if the character was
not found.

Description

Find the last occurrence of the given character c in the string s
and return its location.

See Also

strchr

strrev

Syntax

string strrev(string str)

Arguments

str
The string to reverse

Return

A pointer to the reversed string.

Description

strrev reverses the given string. Note that the original string is
modified/reversed - so the returned pointer is just a pointer to
the original string.

Example

strcpy(str3, "This is the message");
strrev(str3);
msgBox(MB_OK | MB_ICONWARNING, "This is a test...", str3);

See Also

strcpy, sprintf

strset

Syntax

string strset(string str, int c)

Arguments

str
The string to set

Return

A pointer to the new string.

Description

strnset sets all characters of string str to c (converted to a char).

Example

int s = strcpy(&str0, "This is the message!");
s = strset(s + strlen(str3) - 1, NULL);
Info("%s", s);

See Also

strnset

strspn

Syntax

int strspn(const char* s, const char* accept)

Arguments

s
The string to scan.

accept
A string containing the characters to scan for.

Return

The length of the initial matching segment.

Description

Returns the length from the start of string s which consists only
of characters specified in string accept.

See Also

strcspn, strpbrk, strstr

strstr

Syntax

char* strstr(const char* haystack, const char* needle)

Arguments

haystack
The string to scan.

needle
The string to scan the haystack for.

Return

Pointer to the first match.

Description

Scans the string haystack for the first occurrence of the entire
substring needle.

If found, a pointer to the first occurrence is returned; if not
found, a NULL is returned instead.

See Also

strcspn, strpbrk, strspn

strtime

Syntax

strtime(string text)

Arguments

text
Pointer to a string buffer where the current time will be
stored.

Description

This function retrieves the current time and converts it to a
string in the form 15:54:35.

Example

strtime(str0);

See Also

strdate

strtod

Syntax

double strtod(const char* nptr, char** endptr)

Arguments

nptr
Pointer to the string containing the value to convert.

endptr
Optional storage space for output by this function.

Return

The converted value from the string.

Description

This function will convert a string to a double value.

The string is expected to have optional leading white space
followed by an optional plus (+) or minus (-) character, any
number of digits including a single decimal point and optionally
an exponent which consists of either an E or e, an optional plus
or minus sign and one or more digits.

If endptr is not NULL, a pointer to the next character after the
parsed portion of the string is stored in the memory location
reference by endptr.

If the resultant value would overflow the boundaries of the
double datatype, the maximum possible value is returned. If an

underflow would occur, zero will be returned. In both cases an
errorcode will be set which can be queried.

See Also

strtol, strtoul

strtok

Syntax

char* strtok(void *str, const char *delimiters)

Arguments

str
The string to tokenize. On the second and repeated calls, this
should be set to NULL to continue using the internal
tokenizing buffer to search for the next token.

delimiters
A string of characters to use as delimiters (eg space, comma,
tab symbol) that will split the string into tokens.

Return

Returns a pointer to the internal string buffer pointing to the
current token, or NULL if the end of the string has been reached
with no more tokens found.

Description

Splits a string into string "tokens", split by the given delimiters.
Each call to strtok returns a single token.

You can use this function to split a string into individual words by
using the space character as a delimiter. You might also use it to
split a line of a CSV (comma-separated-value) file by using the
comma symbol as a delimiter.

Example

%fml

OnFilterStart: {
 char* strbuffer;
 char* token;
 strbuffer = malloc(1000);
 sprintf(strbuffer, "FM is awesome!");
 printf("%s", strbuffer);
 token = strtok(strbuffer, " ");
 while(token != NULL) {
 printf("%s", token);
 // Use NULL here, not strbuffer
 // otherwise infinite loop here!
 token = strtok(NULL, " ");
 }
 free(strbuffer);
 return true;
}

See Also

strncpy, strcpy

strtol

Syntax

long strtol(const char* nptr, char** endptr, int base)

Arguments

nptr
Pointer to the string containing the value to convert.

endptr
Optional storage space for output by this function.

base
The numerical base of the number, anything from 2 up to and
including 36 or zero.

Return

The converted value from the string.

Description

This function will convert a string to a long value.

The string is expected to have optional leading white space
followed by an optional plus (+) or minus (-) character and any
number of digits.

If base is set to 16 (hexadecimal), the string may begin with an
optional '0x' prefix.

If base is set to 0, the string will be parsed as having base 10
(decimal) unless it starts with '0x', in which case is is parsed as
having base 16 (hexadecimal), or '0', in which case it is parsed as

having base 8 (octal). This allows this function to parse C-style
numbers.

If endptr is not NULL, a pointer to the next character after the
parsed portion of the string is stored in the memory location
reference by endptr.

If the resultant value would overflow the boundaries of the long
datatype, the maximum possible value is returned. If an
underflow would occur, zero will be returned. In both cases an
errorcode will be set which can be queried.

See Also

strtod, strtoul

strtoul

Syntax

unsigned long strtoul(const char* nptr, char** endptr, int
base)

Arguments

nptr
Pointer to the string containing the value to convert.

endptr
Optional storage space for output by this function.

base
The numerical base of the number, anything from 2 up to and
including 36 or zero.

Return

The converted value from the string.

Description

This function will convert a string to an unsigned long value.

If the string would produce a negative value, it's result is negated
so this function always returns the absolute value.

The string is expected to have optional leading white space
followed by an optional plus (+) or minus (-) character and any
number of digits.

If base is set to 16 (hexadecimal), the string may begin with an
optional '0x' prefix.

If base is set to 0, the string will be parsed as having base 10
(decimal) unless it starts with '0x', in which case is is parsed as
having base 16 (hexadecimal), or '0', in which case it is parsed as
having base 8 (octal). This allows this function to parse C-style
numbers.

If endptr is not NULL, a pointer to the next character after the
parsed portion of the string is stored in the memory location
reference by endptr.

If the resultant value would overflow the boundaries of the long
datatype, the maximum possible value is returned. If an
underflow would occur, zero will be returned. In both cases an
errorcode will be set which can be queried.

See Also

strtod, strtol

strupr

Syntax

char* strupr(char* str)

Arguments

str
The string to change to upper case.

Return

A pointer to the modified string.

Description

Converts a string to upper case. Note that this function modifies
the original string.

See Also

strlwr

strxfrm

Syntax

int strxfrm(char * dest, const char * src, int n)

Arguments

dest
The string to which the source string is to be copied.

src
The string which is to be copied to the destination string.

n
The maximum number of characters to copy to the
destination string.

Return

The length of the transformed string, even if higher than n.

Description

Transforms the string src according to the current locale and
copies up to the first n characters to dest. The string is
transformed in such a way that the strcmp function may be used
on the transformed strings to determine the correct collating
sequence according to the locale-specific collating conventions
set by setlocale.

Returns the number of characters needed to store the
transformed string, even if greater than n.

If n is zero, no part of the string is copied to dest (which now may
also be NULL). Use this to find out the size required for dest.

See Also

strcmp

sub

Syntax

int sub(int a, int b, int c)

Arguments

a
Any integer.

b
Any integer.

c
Any integer.

Return

The higher value of (a-b) and c.

Description

This function subtracts 'b' from 'a', then compares the result with
'c' and returns the higher of the two values. This function has
been retained for compatibility with Filter Factory; the function
max(a-b,c) will give the same result and computes faster.

Example

// sets 'p' to 4, because 5-1=4, and 4>2 !
int p = sub(5,1,2);

See Also

add, max, min

t2get

Syntax

int t2get(int x, int y, int z)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

z
The channel number to be retrieved for the pixel: 0->red, 1-
>green, 2->blue, 3->alpha.

Return

The integer value of the specified pixel for the specified channel.

Description

This function retrieves the value of a specified channel 'z' from
the pixel at position (x,y) in the second of FilterMeister's tile
buffers. The coordinates should usually be within the image, ie
0<=x<=X and 0<=y<=Y, while the channel number z should be in
the range 0 to 3 inclusive. Channels 0, 1 and 2 are the red, green
and blue channels respectively, while channel 3 is the alpha
(transparency) channel and is valid only on a layer.

Example

// Copy tile buffer 2 to tile buffer 1

for (y=y_start; y<Y; ++y) {
 for (x=x_start; x<X; ++x) {
 for (z=0; z<Z; ++z) {
 tset(x, y, z, t2get(x, y, z));
 }
 }
}

See Also

src, pget, tget, pset, tset, t2set

t2getp

Syntax

int t2getp(int x, int y)

Arguments

x, y
Image coordinates

Return

Returns the pixel value at the specified image coordinates

Description

This function lets you read a whole pixel from the second tile
buffer. Unlike t2get the returned value includes the values of all
color channels (including the transparency channel if one is
available) of the pixel. Using t2getp instead of t2get takes only
approximately half as much time. To decode the individual color
values from the returned pixel value you have to use the Rval,
Gval, Bval and Aval functions. Currently only works with 8 bit
images.

See Also

srcp, pgetp, psetp, tgetp, tsetp, t2setp, Rval, Gval, Bval, Aval

t2getr

Syntax

int t2getr(int d, int m, int z)

Arguments

d
An integer value for the 'direction' of a pixel.

m
An integer value for the 'magnitude' of a pixel.

z
The image channel of the pixel to return (eg 0 for red, 1 for
green, 2 for blue when in RGB mode)

Return

The value of the pixel channel z at polar coordinates [d,m] in the
second t-buffer.

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates. Polar
coordinates are expressed as [d,m], where 'd' represents the
'direction' to the pixel from the image's center point, and 'm' is
the 'magnitude' of the distance from the center. The t2getr()
function takes a pair of polar coordinates as arguments, and
returns the pixel value in channel z at those co-ordinates in the
second t buffer.

See Also

t2setr, pgetr, c2d, c2m, r2x, r2y

t2set

Syntax

void t2set(int x, int y, int z, int v)

Arguments

x
An integer pixel x-coordinate in the second tile buffer.

y
An integer pixel y-coordinate in the second tile buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the
second tile buffer; the pixel is at coordinates [x,y], and the
channel to be set is given by 'z' (0 = red, 1 = green, 2 = blue, and 3
= alpha).

Example

%ffp

ForEveryTile:
{
 for (y=y_start; y<y_end; ++y)
 {
 for (x=x_start; x<x_end; ++x)

 {
 for (z=0; z<Z; ++z)
 {
 // set pixels to white
 t2set(x, y, z, 255);
 }
 }
 }
 return true;
}

See Also

pset, tset, t2get

t2setp

Syntax

int t2setp(int x, int y, int val)

Arguments

x, y
Image coordinates

val
Pixel value that will be stored

Return

Always returns a value of 1

Description

This function lets you write a whole pixel to the second tile
buffer. Using t2setp instead of t2set takes only approximately half
as much time. You have to use the RGB or RGBA function to
create a pixel value from individual color values. Make sure that
the individual color values lie between 0 and 255, otherwise they
will be mixed up when passing them to this function.

See Also

srcp, pgetp, psetp, tgetp, tsetp, t2getp, RGB, RGBA

t2setr

Syntax

void t2setr(int d, int m, int z, int v)

Arguments

d
An integer direction from the origin in the second tile buffer.

m
An integer magnitude from the origin in the second tile
buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the
second tile buffer, using polar coordinates (rather than cartesian)
to address the pixel; the polar coordinates are relative to the
image center. The channel to be set is given by 'z' (0 = red, 1 =
green, 2 = blue, and 3 = alpha). NOTE: There is no guarantee that
this function is able to completely populate the plane - some
pixels in the output buffer may be unreachable because of
rounding errors.

Example

%ffp

ForEveryTile: {

 int d, m;

 for (d=0; d < 1024; ++d) {
 for (m=0; m < 256; m+=3) {
 for (z=0; z < Z; ++z) {
 // create black circles
 t2setr(d, m, z, 0);
 }
 }
 }

 return true;
}

See Also

psetr,tsetr, t2getr

t3get

Syntax

int t3get(int x, int y, int z)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

z
The channel number to be retrieved for the pixel: 0->red, 1-
>green, 2->blue, 3->alpha.

Return

The integer value of the specified pixel for the specified channel.

Description

This function retrieves the value of a specified channel 'z' from
the pixel at position (x,y) in the third of FilterMeister's tile buffers.
The coordinates should usually be within the image, ie 0<=x<=X
and 0<=y<=Y, while the channel number z should be in the range
0 to 3 inclusive. Channels 0, 1 and 2 are the red, green and blue
channels respectively, while channel 3 is the alpha (transparency)
channel and is valid only on a layer.

Example

// Copy tile buffer 3 to the output buffer

for (y=y_start; y<Y; ++y) {
 for (x=x_start; x<X; ++x) {
 for (z=0; z<Z; ++z) {
 pset(x, y, z, t3get(x, y, z));
 }
 }
}

See Also

src, pget, pset, tget, tset, t2get, t2set, t3set, t4get, t4set

t3getp

Syntax

int t3getp(int x, int y)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

Return

Returns the pixel value at the specified image coordinates

Description

This function lets you read a whole pixel from the third tile
buffer. Unlike t3get the returned value includes the values of all
color channels (including the transparency channel if one is
available) of the pixel. Using t3getp instead of t3get takes only
approximately half as much time. To decode the individual color
values from the returned pixel value you have to use the Rval,
Gval, Bval and Aval functions. Currently only works with 8 bit
images.

See Also

srcp, pgetp, psetp, tgetp, tsetp, t2setp, t3setp, Rval, GVal, BVal,
AVal

t3getr

Syntax

int t3getr(int d, int m, int z)

Arguments

d
An integer value for the 'direction' of a pixel.

m
An integer value for the 'magnitude' of a pixel.

z
The image channel of the pixel to return (eg 0 for red, 1 for
green, 2 for blue when in RGB mode)

Return

The value of the pixel channel z at polar coordinates [d,m] in the
third t-buffer.

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates. Polar
coordinates are expressed as [d,m], where 'd' represents the
'direction' to the pixel from the image's center point, and 'm' is
the 'magnitude' of the distance from the center. The t3getr()
function takes a pair of polar coordinates as arguments, and
returns the pixel value in channel z at those co-ordinates in the
third t buffer.

See Also

t3setr, pgetr, c2d, c2m, r2x, r2y

t3set

Syntax

void t3set(int x, int y, int z, int v)

Arguments

x
An integer pixel x-coordinate in the third tile buffer.

y
An integer pixel y-coordinate in the third tile buffer.

z
An integer color channel number in the range 0 to 3.

v
An integer pixel color value to be set for color channel 'z', in
the range 0 to 255.

Description

This function sets the value of one channel for a pixel in the third
tile buffer; the pixel is at coordinates [x,y], and the channel to be
set is given by 'z' (0 = red, 1 = green, 2 = blue, and 3 = alpha).

Example

%ffp

ForEveryTile:
{
 for (y=y_start; y<y_end; ++y)
 {
 for (x=x_start; x<x_end; ++x)
 {

 for (z=0; z<Z; ++z)
 {
 // set all pixels white
 t3set(x, y, z, 255);
 }
 }
 }
 return true;
}

See Also

pset, tget, tset, t3get

t3setp

Syntax

int t3setp(int x, int y, int val)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

val
Pixel value that shall be stored

Return

Always returns a value of 1

Description

This function lets you write a whole pixel to the third tile buffer.
Using t3setp instead of t3set takes only approximately half as
much time. You have to use the RGB or RGBA function to create
a pixel value from individual color values. Make sure that the
individual color values lie between 0 and 255, otherwise they will
be mixed up when passing them to this function.

See Also

srcp, pgetp, psetp, tgetp, tsetp, t2setp, t3setp, RGB, RGBA

t3setr

Syntax

void t3setr(int d, int m, int z, int v)

Arguments

d
An integer direction from the origin in the third tile buffer.

m
An integer magnitude from the origin in the third tile buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the third
tile buffer, using polar coordinates (rather than cartesian) to
address the pixel; the polar coordinates are relative to the image
center. The channel to be set is given by 'z' (0 = red, 1 = green, 2 =
blue, and 3 = alpha). NOTE: There is no guarantee that this
function is able to completely populate the plane - some pixels in
the output buffer may be unreachable because of rounding
errors.

Example

%ffp

ForEveryTile: {

 int d, m;

 for (d=0; d < 1024; ++d) {
 for (m=0; m < 256; m+=3) {
 for (z=0; z < Z; ++z) {
 // create black circles
 t3setr(d, m, z, 0);
 }
 }
 }

 return true;
}

See Also

psetr,tsetr, t3getr

t4get

Syntax

int t4get(int x, int y, int z)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

z
The channel number to be retrieved for the pixel: 0->red, 1-
>green, 2->blue, 3->alpha.

Return

The integer value of the specified pixel for the specified channel.

Description

This function retrieves the value of a specified channel 'z' from
the pixel at position (x,y) in the fourth of FilterMeister's tile
buffers. The coordinates should usually be within the image, ie
0<=x<=X and 0<=y<=Y, while the channel number z should be in
the range 0 to 3 inclusive. Channels 0, 1 and 2 are the red, green
and blue channels respectively, while channel 3 is the alpha
(transparency) channel and is valid only on a layer.

Example

// Copy tile buffer 4 to the output buffer

for (y=y_start; y<Y; ++y) {
 for (x=x_start; x<X; ++x) {
 for (z=0; z<Z; ++z) {
 pset(x, y, z, t4get(x, y, z));
 }
 }
}

See Also

src, pget, pset, tget, tset, t2get, t2set, t3get, t3set, t4set

t4getp

Syntax

int t4getp(int x, int y)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

Return

Returns the pixel value in the fourth tile buffer at the specified
image coordinates

Description

This function lets you read a whole pixel from the fourth tile
buffer. Unlike t4get the returned value includes the values of all
color channels (including the transparency channel if one is
available) of the pixel. Using t4getp instead of t4get takes only
approximately half as much time. To decode the individual color
values from the returned pixel value you have to use the Rval,
Gval, Bval and Aval functions. Currently only works with 8 bit
images.

See Also

srcp, pgetp, psetp, tgetp, tsetp, t2getp, t3getp, t4setp, Rval,
GVal, BVal, AVal

t4getr

Syntax

int t4getr(int d, int m, int z)

Arguments

d
An integer value for the 'direction' of a pixel.

m
An integer value for the 'magnitude' of a pixel.

z
The image channel of the pixel to return (eg 0 for red, 1 for
green, 2 for blue when in RGB mode)

Return

The value of the pixel channel z at polar coordinates [d,m] in the
third t-buffer.

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates. Polar
coordinates are expressed as [d,m], where 'd' represents the
'direction' to the pixel from the image's center point, and 'm' is
the 'magnitude' of the distance from the center. The t4getr()
function takes a pair of polar coordinates as arguments, and
returns the pixel value in channel z at those co-ordinates in the
fourth t buffer.

See Also

t4setr, pgetr, c2d, c2m, r2x, r2y

t4set

Syntax

void t4set(int x, int y, int z, int v)

Arguments

x
An integer pixel x-coordinate in the fourth tile buffer.

y
An integer pixel y-coordinate in the fourth tile buffer.

z
An integer color channel number in the range 0 to 3.

v
An integer pixel color value to be set for color channel 'z', in
the range 0 to 255.

Description

This function sets the value of one channel for a pixel in the
fourth tile buffer; the pixel is at coordinates [x,y], and the channel
to be set is given by 'z' (0 = red, 1 = green, 2 = blue, and 3 = alpha).

Example

%ffp

ForEveryTile:
{
 for (y=y_start; y<y_end; ++y) {
 for (x=x_start; x<x_end; ++x) {
 for (z=0; z<Z; ++z) {
 // set all pixels white

 t4set(x, y, z, 255);
 }
 }
 }
 return true;
}

See Also

pset, tset, tget, t4get

t4setp

Syntax

int t4setp(int x, int y, int val)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

val
Pixel value that shall be stored

Return

Always returns a value of 1

Description

This function lets you write a whole pixel to the fourth tile buffer.
Using t4setp instead of t4set takes only approximately half as
much time. You have to use the RGB or RGBA function to create
a pixel value from individual color values. Make sure that the
individual color values lie between 0 and 255, otherwise they will
be mixed up when passing them to this function.

See Also

srcp, pgetp, psetp, tgetp, tsetp, t4getp, RGB, RGBA

t4setr

Syntax

void t4setr(int d, int m, int z, int v)

Arguments

d
An integer direction from the origin in the third tile buffer.

m
An integer magnitude from the origin in the third tile buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the
fourth tile buffer, using polar coordinates (rather than cartesian)
to address the pixel; the polar coordinates are relative to the
image center. The channel to be set is given by 'z' (0 = red, 1 =
green, 2 = blue, and 3 = alpha). NOTE: There is no guarantee that
this function is able to completely populate the plane - some
pixels in the output buffer may be unreachable because of
rounding errors.

Example

%ffp

ForEveryTile: {

 int d, m;

 for (d=0; d < 1024; ++d) {
 for (m=0; m < 256; m+=3) {
 for (z=0; z < Z; ++z) {
 // create black circles
 t4setr(d, m, z, 0);
 }
 }
 }

 return true;
}

See Also

psetr,tsetr, t3getr

TAB

Syntax

ctl[n]: TAB(Class Specific Properties), Other Properties

Description

Tabs are useful for grouping related controls that don't all need
to be onscreen at the same time. In graphics programs, this is
often used to group separate features such as
brightness/contrast, gamma, and hue/saturation/luminance
into separate sets of controls the user can manipulate one at a
time.

Class Specific Properties

BOTTOM
Orients the tabs on the bottom instead of the top (or right if
VERTICAL is enabled)

BUTTONS
Uses pushbuttons instead of tabs to switch between sheets.

FLATBUTTONS
When used with BUTTONS, makes the buttons look sunken
into the dialog instead of raised.

HOTTRACK
Enables hover/mouseover events (ie illuminates the tab
labels when hovered over)

RIGHT
Orients the tabs on the right side if VERTICAL is enabled,
bottom otherwise

TABS
Uses tabs to switch between sheets. (default)

VERTICAL

Orients the tabs vertically / side on

Other Properties

Pos
The position of the tab control on the screen, in DBUs

Size
The size of the tab control

Text
Sets the initial labels for all tab sheets & therefore how many
sheets it has (default = no Text)

Tooltip
Sets a tooltip displayed when the mouse hovers over the tab
labels.

Val
Selects which tab sheet is visible and activates all controls
within it (default = 0)

Example

%ffp

ctl[10]: TAB, Text="RGB\nHSL", Pos=(320,5), Size=
(160,100), Val=0

// Add to tab sheet 0, RGB
ctl[2]: "R", Tab=(10,0), Range=(-100, 100), Pos=(*,25)
ctl[3]: "G", Tab=(10,0), Range=(-100, 100), Pos=(*,35)
ctl[4]: "B", Tab=(10,0), Range=(-100, 100), Pos=(*,45)

// Add to tab sheet 1, HSL
ctl[5]: "H", Tab=(10,1), Range=(-100, 100), Pos=(*,25)
ctl[6]: "S", Tab=(10,1), Range=(-100, 100), Pos=(*,35)
ctl[7]: "L", Tab=(10,1), Range=(-100, 100), Pos=(*,45)

ForEveryPixel: {

 int hue = rgb2hsl(R, G, B, 0) + ctl(5);
 int sat = rgb2hsl(R, G, B, 1) + ctl(6);
 int lum = rgb2hsl(R, G, B, 2) + ctl(7);

 int red = hsl2rgb(hue, sat, lum, 0);
 int grn = hsl2rgb(hue, sat, lum, 1);
 int blu = hsl2rgb(hue, sat, lum, 2);

 R = red + ctl(2);
 G = grn + ctl(3);
 B = blu + ctl(4);
}

See Also

COMBOBOX

terminateThread

Syntax

bool terminateThread(int hThread)

Arguments

hThread
Specifies the handle of the thread which we wish to
terminate, or 0 to terminate all current worker threads.

Return

Returns true if all specified threads have terminated, or false if
an error occurred.

Description

Use this function to terminate one or all worker threads that
were created by calling triggerThread. To terminate one
particular thread, set the hThread parameter to the value of the
thread handle that was returned by the call to triggerThread. To
terminate all current worker threads, set the hThread parameter
to 0.

Note: This API can be dangerous to use, since forcibly
terminating a thread can result in failure to release resources
owned by the thread, and DLLs attached to the thread are not
notified that the thread is terminating. Use this API only when
absolutely necessary. For more details, see the documentation of
the Windows [TerminateThread function].

Comments

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-terminatethread

The current implementation of terminateThread recognizes only
a parameter of 0 to terminate all threads; you cannot specify a
thread handle to terminate a specific thread.

Example

See the example in triggerThread.

See Also

System Functions, countProcessors, triggerThread,
waitForThread, isThreadActive, getThreadRetVal

testAbort

Syntax

bool testAbort()

Return

Returns true if the user has pressed the Esc key, false otherwise.

Description

The testAbort() function tests for a user-requested abort.

Since we often want to call testAbort() and updateProgress() at
the same place in our filter program, FM provides a shortcut by
calling testAbort() implicitly within updateProgress(), and
returning the result of testAbort() as the result of
updateProgress(). So we can kill two birds with one stone and
replace the separate calls to testAbort() and updateProgress()
with the following single call:

// Update the progress indicator
// and check for user abort on
// each new row...

if (updateProgress(y - y_start, y_end - y_start)) break;

Also note that the following lines are equivalent:

if (testAbort()) break;

if (getAsyncKeyState(VK_ESCAPE)<0) break;

Example

%ffp

// If processing takes too much
// time, user can abort at any
// time. Instead of using break,
// I chose to integrate testAbort
// directly in the test of the
// first "for loop", which is a
// cleaner solution.

ForEveryTile:
{
 // row by row, included testAbort here
 for (y = 0; y < Y && !testAbort(); y++)
 {

 // column by column
 for (x = 0; x < X; x++)
 {

 // channel by channel
 for (z = 0; z < Z; z++)
 {

 // draw something
 if((x%8)==(y%8)) pset(x,y,z,0);

 // update the preview
 // (only in active filter dialog)
 updatePreview(0);

 }
 }

 }
 return true;
}

See Also

updateProgress, getAsyncKeyState

tget

Syntax

int tget(int x, int y, int z)

Arguments

x
The x coordinate of the pixel to be retrieved.

y
The y coordinate of the pixel to be retrieved.

z
The channel number to be retrieved for the pixel: 0->red, 1-
>green, 2->blue, 3->alpha.

Return

The integer value of the specified pixel for the specified channel.

Description

This function retrieves the value of a specified channel 'z' from
the pixel at position (x,y) in the first of FilterMeister's tile buffers.
The coordinates should usually be within the image, ie 0<=x<=X
and 0<=y<=Y, while the channel number z should be in the range
0 to 3 inclusive. Channels 0, 1 and 2 are the red, green and blue
channels respectively, while channel 3 is the alpha (transparency)
channel and is valid only on a layer.

Example

// Copy tile buffer 1 to the output buffer

for (y=y_start; y<Y; ++y) {
 for (x=x_start; x<X; ++x) {
 for (z=0; z<Z; ++z) {
 pset(x, y, z, tget(x, y, z));
 }
 }
}

See Also

src, pget, t2get, pset, tset, t2set

tgetp

Syntax

int tgetp(int x, int y)

Arguments

x, y
Image coordinates

Return

Returns the pixel value at the specified image coordinates

Description

This function lets you read a whole pixel from the first tile buffer.
Unlike tget the returned value includes the values of all color
channels (including the transparency channel if one is available)
of the pixel. Using tgetp instead of tget takes only approximately
half as much time. To decode the individual color values from the
returned pixel value you have to use the Rval, Gval, Bval and Aval
functions. Currently only works with 8 bit images.

See Also

srcp, pgetp, psetp, tsetp, t2getp, t2setp, Rval, Gval, Bval, Aval

tgetr

Syntax

int tgetr(int d, int m, int z)

Arguments

d
An integer value for the 'direction' of a pixel.

m
An integer value for the 'magnitude' of a pixel.

z
The image channel of the pixel to return (eg 0 for red, 1 for
green, 2 for blue when in RGB mode)

Return

The value of the pixel channel z at polar coordinates [d,m] in the
first t-buffer.

Description

Pixels are usually addressed by their cartesian coordinates [x,y],
but FilterMeister also allows the use of polar coordinates. Polar
coordinates are expressed as [d,m], where 'd' represents the
'direction' to the pixel from the image's center point, and 'm' is
the 'magnitude' of the distance from the center. The tgetr()
function takes a pair of polar coordinates as arguments, and
returns the pixel value in channel z at those co-ordinates in the
first t buffer.

See Also

tsetr, pgetr, c2d, c2m, r2x, r2y

time

Syntax

int time(time_t *timeptr)

Arguments

timeptr
A pointer to an integer where the result is optionally stored.
Usually you would set this to a NULL pointer and use the
return value instead.

Return

The number of seconds since January 1, 1970 12:00:00 GMT (also
known as the [Unix Epoch]).

Description

Returns the current time as expressed in seconds since the Unix
Epoch.

Comments

You can find the number of days since the Unix Epoch by dividing
the answer by 86400. (60 seconds * 60 minutes * 24 hours =
86400 seconds in a day.)

It's possible that the first parameter of the time function can take
a pointer to a data structure - the time function in C allows
passing a pointer to a time_t structure/object. However, since
FilterMeister does not yet support the time_t type, the author of

https://en.wikipedia.org/wiki/Unix_time

this documentation has assumed that the first parameter given to
time must always be NULL.

See Also

clock

tmpfile

Syntax

FILE* tmpfile()

Return

A file pointer to a newly opened temporary file.

Description

Creates and opens a temporary file that is deleted when the file is
closed.

Example

%fml

OnFilterStart: {
 void* newfile;
 newfile = tmpfile();
 if (!newfile) {
 printf("Unable to create file.");
 }
 else {
 // Do things with file here
 fclose(newfile);
 }
 return false;
}

See Also

fopen, fclose, tmpnam

tmpnam

Syntax

char *tmpnam(char *s)

Argument

s
A pointer to a string where the filename will be stored. If s is
NULL , the parameter is ignored.

Return

A pointer to a temporary/internal string buffer containing the
temporary filename. Note that this string will be modified by
further calls to tmpnam, so it should be regarded as a single use
return value.

Description

Generates a guaranteed unique filename that can be used to
create a temporary file.

Comment

Note that the generated filename will contain directory path
characters, ie it may be preceded by a backslash on Windows
machines.

Example

%fml

OnFilterStart: {
 printf("A possible temporary filename: %s",
tmpnam(NULL));
 return false;
}

See Also

fopen, fclose, tmpfile

tone

Syntax

int tone(int pixel, int h, int m, int d)

Arguments

pixel
The pixel color value to modify

h
Highlight adjustment, range -127 to 128

m
Midtone adjustment, range -127 to 128

d
Darkness adjustment, range -127 to 128

Return

The newly toned pixel value.

Description

Applies a simple highlight / midtone / darkness tone effect to
the image.

Example

ctl[0]: "Highlights", Range=(-127,128), Val=0
ctl[1]: "Midtone", Range=(-127,128), Val=0
ctl[2]: "Darkness", Range=(-127,128), Val=0

ForEveryTile: {
 for (y = y_start; y < y_end; y++) {

 for (x = x_start; x < x_end; x++) {
 for (z=0; z < 3; z++) {
 pset(x,y,z, tone(src(x,y,z), ctl(0), ctl(1),
ctl(2)));
 }
 }
 }
 return true;
}

See Also

blend, contrast, gamma, saturation

TRACKBAR

Syntax

ctl[n]: TRACKBAR(Class Specific Properties), Other
Properties

Description

This user control is a scrollbar with a different design. The filter
designer can insert so-called ticks on one or two sides of the
handle.

Class Specific Properties

AUTOTICKS
Automatically sets tick marks according to range amount.

BOTH
Sets ticks on adjacent sides of the handle according to
orientation (HORZ or VERT).

BOTTOM
Changes orientation of handle and ticks (default)

HORZ
Horizontal scrollbar orientation (default)

LEFT
Changes orientation of handle and ticks.

NOTHUMB
Hides the thumb handle.

NOTICKS
Hides the tick marks of the trackbar.

RIGHT
Changes orientation of handle and ticks (default with VERT
active)

TOP

Changes orientation of handle and ticks.
TOPTIP

Displays the trackbar value beside the handle when dragging
the handle.

VERT
Vertical scrollbar orientation.

Other Properties

Color
Sets the text background color. (default =
COLOR_SCROLLBAR)

NoTrack
Prevents the preview window updating when dragging the
scrollbar's handle. (default)

Page
Sets the scrollbar paging jump unit. (default = 10)

Range
Sets the numerical range the scrollbar can return. (default =
(0, 255))

Track
Updates the preview window when dragging the scrollbar's
handle.

Val
Initializes the scrollbar's value. (default = 0)

Example

ctl[0]: TRACKBAR, Size=(50, 20), Color=Red
ctl[5]: TRACKBAR (VERT, BOTH, TOPTIP, AUTOTICKS), Range=
(0, 10), Size=(30, 90), Color=Yellow

Notes

Currently, trackbar values cannot be correctly read if the first
item i1 of the Range=(i1,i2) property is greater than the second
item i2. These problems will be resolved in future FM versions.

There is also a known issue with trackbars not responding to
keyboard events. If the user modifies the trackbar value by using
the keyboard, it will not trigger the events that would call the
OnCtl handler, (even though this does work for scrollbar
controls).

trackPopupMenu

Syntax

int fm_trackPopupMenu (int hMenu, int type, int x, int y,
int style)

Arguments

hMenu
Handle to the menu to be displayed.

type
If set to 1, the popup menu is displayed at the cursor
coordinates. Otherwise it is displayed at the x,y coordinates.

x, y
Coordinates of the popup menu in DBU. Supply only if type !=
1.

style
A few alignment and other options, e.g. TPM_HORIZONTAL,
TPM_VERTICAL, TPM_CENTERALIGN, TPM_LEFTALIGN,
TPM_RIGHTALIGN, TPM_BOTTOMALIGN,
TPM_TOPALIGN, TPM_VCENTERALIGN, TPM_NONOTIFY,
TPM_RETURNCMD, TPM_LEFTBUTTON,
TPM_RIGHTBUTTON. Set it to zero for default behaviour.

Return

Returns the number of the menu item (uItem) that was selected
by the user (but only if you use 0 or TPM_RETURNCMD or the
style parameter). If no menu item was selected, zero is returned.

Description

Queries a menu for the last selected item by the user.

Example

%ffp

ctl[0]: PUSHBUTTON, "Click Me!"

OnCtl(n): {

 if (n==0 && e == FME_CLICKED) {

 int menu=0;

 menu = createPopupMenu();

 insertMenuItem(menu, 1, "Do This", MFS_ENABLED ,
NULL);
 insertMenuItem(menu, 2, "Do That", MFS_ENABLED |
MFS_DEFAULT, NULL);
 insertMenuItem(menu, 3, "Do Nothing", MFS_ENABLED,
NULL);
 Info("Selection: %d", trackPopupMenu (menu, 1, 0, 0,
0));

 destroyMenu(menu);
 }

 return false;
}

See Also

createPopupMenu, insertMenuItem, destroyMenu

tri

Syntax

int tri (int a)

Arguments

a
Normally a value between 0 and 1024, but it can also be
higher

Return

A value between -511 and 512 is returned.

Description

tri works like sin(), but returns a triangular/linear value. Has the
same effect as tricos(a-256).

See Also

tricos

tricos

Syntax

int tricos(int a)

Arguments

a
Normally a value between 0 and 1024, but it can also be
higher

Return

A value between -511 and 512 is returned.

Description

tricos works like cos(), but returns a triangular/linear value.

Example

%ffp

ctl(0): checkbox, Text="Use tricos() instead of cos()",
Size=(100,*)

ForEveryTile:
{

 int calc;

 for (y=y_start; y<y_end; y++) {

 updateProgress(y,y_end);

 for (x=x_start; x<x_end; x++) {

 if (ctl(0))
 calc = scl(tricos(x*1024/X) , -511, 512, 0, 255);
 else
 calc = scl(cos(x*1024/X) , -511, 512, 0, 255);

 for (z=0; z<Z; z++) {

 pset(x, y, z, calc);

 }
 }
 }

 return true;
}

See Also

tri

triggerEvent

Syntax

int triggerEvent(int n, int event, int previous)

Arguments

n
the control number of the event (eg CTL_OK or a
programmer defined value)

event
the type of event to raise (eg FME_CLICKED,
FME_CUSTOMEVENT)

previous
a value to pass to the event handler (usually the previous
value of the control)

Return

A value of 0 or 1, depending on whether the event handler code
returned true or false.

Description

triggerEvent is used to artificially launch events, such as a dialog
button click, the mouse moving over a dialog control, or to
trigger timer events without resetting the actual timer. You can
also use triggerEvent to write your own user-defined functions.
By using FME_CUSTOMEVENT and creating custom values for
the 'n' parameter, you can call specific sections of your OnCtl
handler. You can even use the previous variable as a simple
function parameter - though if you need more parameters, you

are better off using the built-in global variables to pass and
return values.

Example

OnCtl(n):
{
 if (e == FME_CUSTOMEVENT)
 {
 switch (n)
 {
 case 0:
 // Execute this code
 if (previous == 1) ...
 else if (previous == 2) ...
 return true;
 case 1:
 // Execute that code
 ...
 return false;
 }
 }
 return false;
}

triggerThread

Syntax

int triggerThread(int n, int event, int previous)

Arguments

n
An integer index which will be passed to the thread as
parameter n. This value may be used however you please, but
is typically used to select which routine will be executed
within the OnCtl handler. If event is FME_CUSTOMEVENT,
then n may be any integer value; otherwise, n must be a
value between 0 and N_CTLS-1 (i.e., between 0 and 255,
inclusive, in current FM releases).

event
An integer value which is typically set to the code for one of
the FilterMeister Events. This value will be passed to the
thread as parameter e, and is used to detect that a thread
trigger event has occurred within the OnCtl handler.

previous
An integer value which will be passed to the thread as
parameter previous. This value may be used to pass any
value you want to the thread. For control events that are
triggered by FM itself (using triggerEvent), the previous
value usually contains the previous value of a control. With
triggerThread() you can use previous to pass an additional
parameter, such as a thread ID, to your thread.

Return

Returns the handle of the created thread if successful. Returns 0
if it failed (e.g., n is out of range when event is

FME_CUSTOMEVENT; or memory could not be allocated for a
new thread context record; or the Windows CreateThread API
failed).

Description

This function creates a worker thread and schedules it to execute
the OnCtl handler, passing it three parameters which may be
accessed in OnCtl() as n, e, and previous, respectively. n is
typically a function code specifying what section of OnCtl
contains the code to be executed. e is typically
FME_CUSTOMEVENT. The previous parameter may be used for
any desired purpose.

triggerThread() is almost identical to triggerEvent(). The only
difference is that triggerEvent executes the OnCtl handler
directly in the current thread, while triggerThread causes the
OnCtl handler to be executed in a new worker thread.

Example

%fml

int nTile;

OnFilterStart:
{
 nTile = 0;
 isTileable = true;
 return false;
}

ForEveryTile:
{
 int ncpus = countProcessors();

 nTile++;

 for (int i=0; i < ncpus; i++) {
 // create 'ncpus' worker threads
 // to execute function 99
 int hThread = triggerThread(99, FME_CUSTOMEVENT, i);
 if (hThread==0) {
 ErrorOk("Failed to create thread %d in tile %d", i,
nTile);
 return false;
 }
 }

 waitForThread(0, INFINITE, 0);
 Info("Tile %d is done!", nTile);
 return true; // finished processing
}

OnCtl(n,e):
{
 switch (e) {
 case FME_CUSTOMEVENT:
 switch (n) {
 case 99: // function 99
 // 'previous' has our thread ID
 Info("Thread %d is executing", previous);
 // do some useful work here...
 return true;
 default:
 Warn("Unknown thread function %d", n);
 return false;
 } // switch n
 break;

 default:

 // probably a control event
 return false; // process it
 } // switch e

 return false;
}

See Also

System Functions, Multithreading Functions, Events,
FME_CUSTOMEVENT, triggerEvent, countProcessors,
waitForThread, isThreadActive, getThreadRetVal,
terminateThread

true

Description

true is a Boolean constant representing a logical state of "truth".
In FilterMeister, any non-zero numeric value, any non-NUL
character constant, or any non-null pointer represents a state of
"truth", but the numeric value 1 is reserved as the canonical value
for "truth". Thus, the Boolean constant true has a numeric value
of 1 when evaluated in a numeric context.

Note, however, that any non-zero value represents "truth", so the
numeric constants 2, 0.003, 255, -1.0, and -88888 (and the string
constant "Hello world" or the character constant 'Z') will also
evaluate as true in a Boolean or logical context.

Caution

A common cause of mistakes in C or FM programming is to
assume that any true value has the value 1 (or true). It is bad
programming style, and a frequent cause of subtle errors, to code
for example:

if (flag==true) break;

since this code will not break if the value of flag is 77, which also
represents truth. Unless the programmer is specifically testing
for the value 1, the preferred idiom would be:

if (flag) break;

which will break when flag contains any true value (i.e., any
value but 0, ±0.0, '\0', or NULL), and not just in the case that flag

has the value 1.

Note that this caution does not apply to the Boolean constant
false , since the canonical numeric value of false is 0. The only
other representation of falsity is a NUL character or a null
pointer, and the numeric value of these is always 0 in FM. Thus
the following code fragment, while poor style, will always break
correctly when flag has the value 0, ±0.0, false , '\0', or NULL .

if (flag==false) break;

Nonetheless, the preferred coding style is:

if (!flag) break;

Example

%ffp

OnFilterStart:{

 bool flag = true;

 Info("The integer value of true is %d", flag);

 if (true)
 Info("The gostak distims the doshes.");

 return false;
}

This snippet will display two message boxes with the messages:

The integer value of true is 1

The gostak distims the doshes.

See Also

false, Constants

tryEnterCriticalSection

Syntax

bool tryEnterCriticalSection(int hCS)

Arguments

hCS
Specifies the handle of the Critical Section to be entered, as
obtained by a call to createCriticalSection.

Return

Returns true if the Critical Section was successfully entered,
false if another thread already owns the Critical Section or if hCS
is zero.

Description

This function is similar to enterCriticalSection, but does not wait
if another thread already owns the designated Critical Section--
in which case it returns immediately with a return value of false.
This allows the calling thread to perform other useful work
instead of blocking while the Critical Section is busy.

For more information about Critical Sections, see the MSDN
documentation about [Critical Section Objects].

Example

In the following somewhat contrived example,
myThreadFunction uses a Critical Section (myCS) to serialize
access to myGlobalFlag. However, if the current thread cannot

https://docs.microsoft.com/en-us/windows/win32/sync/critical-section-objects

gain immediate access to the Critical Section via
tryEnterCriticalSection, it goes off for a while (no pun intended)
to perform some other useful work (perhaps updating the GUI)
before retrying entry to the Critical Section. Note that we call
sleep(0) at the end of the while-loop to voluntarily yield the rest
of our timeslice so another ready thread may be able to run,
rather than hogging an entire timeslice unnecessarily.

// global variables
int myGlobalFlag = 0;
int myCS = createCriticalSection();

int myThreadFunction(void) {

 while (!tryEnterCriticalSection(myCS)) {
 // do some other useful work here...
 sleep(0); //give up timeslice
 }

 // we have now entered the Critical Section
 // guarding access to myGlobalFlag...
 if (myGlobalFlag == 0) {
 myGlobalFlag = 1;
 // do something...
 myGlobalFlag = 0;
 }

 leaveCriticalSection(myCS);

 return 0; // exit code
}

See Also

System Functions, createCriticalSection, enterCriticalSection,
leaveCriticalSection, deleteCriticalSection

tset

Syntax

void tset(int x, int y, int z, int v)

Arguments

x
An integer pixel x-coordinate in the first tile buffer.

y
An integer pixel y-coordinate in the first tile buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the first
tile buffer; the pixel is at coordinates [x,y], and the channel to be
set is given by 'z' (0 = red, 1 = green, 2 = blue, and 3 = alpha).

Example

%ffp

ForEveryTile:
{
 for (y=y_start; y < y_end; ++y)
 {
 for (x=x_start; x < x_end; ++x)
 {

 for (z=0; z < Z; ++z)
 {
 // set all pixels white
 tset(x, y, z, 255);
 }
 }
 }
 return true;
}

See Also

pset, t2set, tget

tsetp

Syntax

int tsetp(int x, int y, int val)

Arguments

x, y
Image coordinates

val
Pixel value that shall be stored

Return

Always returns a value of 1

Description

This function lets you write a whole pixel to the first tile buffer.
Using tsetp instead of tset takes only approximately half as much
time. You have to use the RGB or RGBA function to create a pixel
value from individual color values. Make sure that the individual
color values lie between 0 and 255, otherwise they will be mixed
up when passing them to this function.

See Also

srcp, pgetp, psetp, tgetp, t2getp, t2setp, RGB, RGBA

tsetr

Syntax

void tsetr(int d, int m, int z, int v)

Arguments

d
An integer direction from the origin in the first tile buffer.

y
An integer magnitude from the origin in the first tile buffer.

z
An integer channel number in the range 0 to 3.

v
An integer value to be set for channel 'z', in the range 0 to
255.

Description

This function sets the value of one channel for a pixel in the first
tile buffer, using polar coordinates (rather than cartesian) to
address the pixel; the polar coordinates are relative to the image
center. The channel to be set is given by 'z' (0 = red, 1 = green, 2 =
blue, and 3 = alpha). NOTE: There is no guarantee that this
function is able to completely populate the plane - some pixels in
the output buffer may be unreachable because of rounding
errors.

Example

%ffp

ForEveryTile:

{
 int d, m;

 for (d=0; d<1024; ++d)
 {
 for (m=0; m<256; m+=3)
 {
 for (z=0; z<Z; ++z)
 {
 // create white circles
 tsetr(d, m, z, 256);
 }
 }
 }

 return true;

}

See Also

psetr, t2setr, tgetr

updateAnchors

Syntax

int updateAnchors(int dialogWidth, int dialogHeight)

Arguments

dialogWidth
The width of the filter dialog window. Set to -1 to have the
function retrieve this itself.

dialogHeight
The height of the filter dialog window. Set to -1 to have the
function retrieve this itself.

Return

Always returns true.

Description

Updates the positioning anchors for all user controls in the
dialog, as appropriate for the given dialog width & height.

Example

updateAnchors(-1, -1);

See Also

setCtlAnchor

updatePreview

Syntax

int updatePreview(int id)

Arguments

id
The ID of the proxy preview control to be updated.

Return

Returns 1 if doingProxy (and the preview was updated), 0
otherwise.

Description

updatePreview causes the proxy preview to be immediately
updated with the current contents of the output image. This is
useful for animating iterative algorithms in the preview window.
At present, FM supports only one proxy preview, so the 'id'
argument is ignored.

Example

%ffp

ForEveryTile:
{
 // row by row
 for(y = 0; y < Y; y++)
 {
 // column by column

 for(x = 0; x < X; x++)
 {
 // channel by channel
 for(z = 0; z < Z; z++)
 {

 // apply an effect
 pset(x, y, z,
 src(x % 100, y % 100, z)
 + rnd(-50, 50));
 }
 }

 // update the progress bar
 updateProgress(y, Y);

 // update the preview
 // (only in filter dialog)
 updatePreview(a);

 }
 return true;
}

See Also

updateProgress

updateProgress

Syntax

int updateProgress(int p, int max)

Arguments

p
Number in the range 0 to max representing current filter
progress

max
The maximum value p can take

Return

Returns 1 if the user has pressed the Esc key, 0 otherwise.

Description

The function updateProgress(current,max) updates the progress
bar on the plug-in or in the information bar at the bottom of the
screen in your image editing program. The variable p describes
the current progress in the range [0,max]. If the user presses the
ESC key, a non-zero value is returned by updateProgress().

Example

%ffp

// This example updates the
// progress bar for every pixel
// in the image. In more
// complicated filters this can

// slow down the plug-in. It may
// be better to update the
// progress bar for every Y row.

ForEveryTile:
{
 // row by row
 for (y = 0; y < Y; y++)
 {

 // column by column
 for (x = 0; x < X; x++)
 {

 // channel by channel
 for (z = 0; z < Z; z++)
 {

 // apply an effect
 pset(x, y, z,
 src(x % 100, y % 100, z)
 + rnd(-50, 50));

 // update progress bar
 updateProgress(y, Y);

 // update the preview
 // (only in active
 // filter dialog)
 updatePreview(a);

 }
 }
 }
 return true;
}

See Also

updatePreview, testAbort

VDBUsToPixels

Syntax

VDBUsToPixels(int vdbu)

Arguments

vdbu
Number of VDBUs to convert to pixels

Description

Converts VDBU (vertical dialog base units, the measurement by
which FilterMeister dialogs are constructed) to real on-screen
pixels measurement. Note that the result of this conversion
depends on the users' Windows installation and may vary.

Example

Info("DialogSize in pixels: %d x %d",
HDBUsToPixels(getDialogWidth()),
VDBUsToPixels(getDialogHeight()));

See Also

HDBUsToPixels, PixelsToHDBUs, PixelsToVDBUs

waitForThread

Syntax

bool waitForThread(int hThread, int ms, int userinput)

Arguments

hThread
Specifies the handle of the thread for which we wish to await
completion, or 0 to wait for the completion of all current
worker threads.

ms
Specifies the maximum time in milliseconds that we are
willing to wait, or 0 to return immediately after checking for
completion of the thread(s), or INFINITE (0xFFFFFFFF) if we
are willing to wait forever.

userinput
Set this value to 0 to discard all mouse and keyboard
messages while waiting for the thread(s) to complete, or 1 to
continue processing all messages while waiting.

Return

Returns true if all specified threads have completed, or false if we
timed out while waiting.

Description

Use this function to wait for the completion of one or all worker
threads that were created by calling triggerThread. To wait for
one particular thread, set the first parameter to the value of the
thread handle that was returned by the call to triggerThread. To

wait for all current worker threads to complete, set the hThread
parameter to 0.

The second parameter ms specifies how long to wait for the
thread(s) to complete, in millisecond units. Specify 0 to return
immediately after checking for completion of the thread(s), or
INFINITE to wait indefinitely.

While waiting for the thread(s) to complete, waitForThread runs
a message pump loop to process other messages in the
meantime. If the userinput parameter is 1, the message loop will
process all messages, including user input messages from the
keyboard and mouse. If processing such user input messages
interferes in an undesired way while the worker thread(s) are
running, set this parameter to 0 to ignore and discard all such
user input messages. For example, if the worker threads are
processing the current image, then it would be undesirable to
allow mouse or keyboard input to trigger the preview's zoom
control, or to drag and resize the dialog window. In general, it is
recommended to set this parameter to 0 unless you have specific
requirements to do otherwise.

Comments

The current implementation of waitForThread recognizes only a
parameter of 0 to wait for all threads; you cannot specify a thread
handle to wait for a specific thread.

Example

See the triggerThread example.

See Also

System Functions, Multithreading Functions, countProcessors,
triggerThread, isThreadActive, getThreadRetVal,

terminateThread

Warn

Syntax

Warn(string promptString, ...)

Arguments

promptString
Specifies the prompt string for the warning message window.
This string may contain printf-style format descriptors,
which will be expanded using the succeeding arguments.

...
Variable number of arguments of varying types, should
correspond to the format descriptors in promptString.

Return

IDOK or IDCANCEL depending on which button the user clicks.

Description

This function displays a warning box containing a text string, an
OK button and a Cancel button.

Example

Warn("This might take a while...");
Warn("Your image is not a square");
if (Warn("This might take a while...") == IDOK)
 //apply the following filter code...

See Also

msgBox, Info, Error

xyzcnv

Syntax

int xyzcnv(int x, int y, int z, int m11, int m12, int m13,
int m21, int m22, int m23, int m31, int m32, int m33,int d)

Arguments

x, y, z
x, y and z coordinates of the image

m11 - m33
Weights of the 3x3 pixel matrix

d
Division value which usually should be m11 + m12 + m13 + m21
+ m22 + m23 + m31 + m32 + m33. If you set d to zero this sum
will be used automatically.

Return

Returns the convoluted value from the 3x3 matrix at the
coordinates (x,y,z)

Description

Calculates a 3x3 convolution kernal. This is a substitute for the
cnv() function which can't be used in the ForEveryTile handler.
Currently works only with 8-bit images.

Example

%ffp

// Produces a Blur effect

ForEveryTile: {

 int calc;

 for (y=y_start; y<y_end; y++) {

 updateProgress(y,y_end);

 for (x=x_start; x<x_end; x++) {

 for (z=0; z<Z; z++) {
 calc = xyzcnv (x,y,z, 4,4,4, 4,16,4, 4,4,4, 0);
 pset(x, y, z, calc);
 }
 }
 }

 return true;
}

See Also

cnv

ycbcr2rgb

Syntax

int ycbcr2rgb(int y, int cb, int cr, int z)

Arguments

y
Red value

cb
Green value

cr
Blue value

z
Determines which value is returned. z=0 for red, z=1 for
green, z=2 for blue

Return

Returns the red, green or blue value from 0 to 255 depending on
the value of z

Description

Lets you convert YCbCr values to RGB values.

Example

%ffp

ctl(0): "Y (Luminancy)",
 Range=(-255,255), Val=0
ctl(1): "Cb (Chroma Blue)",

 Range=(-255,255), Val=0
ctl(2): "Cr (Chroma Red)",
 Range=(-255,255), Val=0

ForEveryTile: {

 int r,g,b,i,cb,cr;

 for (y= y_start; y < y_end; y++) {

 if (updateProgress(y,y_end)) abort();

 for (x = x_start; x < x_end; x++) {

 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);

 cb = rgb2ycbcr(r,g,b,1);
 cr = rgb2ycbcr(r,g,b,2);

 // Do the adjustment
 i = i + ctl(0);
 cb = cb + ctl(1);
 cr = cr + ctl(2);

 pset(x, y, 0, ycbcr2rgb(i,cb,cr,0));
 pset(x, y, 1, ycbcr2rgb(i,cb,cr,1));
 pset(x, y, 2, ycbcr2rgb(i,cb,cr,2));

 }
 }
 return true;
}

See Also

rgb2ycbcr

YesNo

Syntax

int YesNo(string promptString, ...)

Arguments

promptString
Specifies the prompt string for the Yes/No message window.
This string may contain printf-style format descriptors,
which will be expanded using the succeeding arguments.

...
Variable number of arguments of varying types, should
correspond to the format descriptors in promptString.

Return

IDYES or IDNO depending on which button the user clicks.

Description

This function displays a message box containing a text string, a
YES and a NO button.

Example

YesNo("Will you marry me?");
if (YesNo("Will you marry me?") == IDYES)
 Info("Congratulations!");
else
 Info("Maybe later...");

See Also

Info, msgBox, Warn, YesNoCancel

YesNoCancel

Syntax

int YesNoCancel(string promptString, ...)

Arguments

promptString
Specifies the prompt string for the Yes/No/Cancel message
window. This string may contain printf-style format
descriptors, which will be expanded using the succeeding
arguments.

...
Variable number of arguments of varying types, should
correspond to the format descriptors in promptString.

Return

IDYES, IDNO or IDCANCEL depending on which button the user
clicks.

Description

This function displays a message box containing a text string, a
YES, a NO and a CANCEL button.

Example

YesNoCancel ("Do you want to buy %d stocks?" , M + X);
if (YesNoCancel("Will you marry me?") == IDYES)
 Info("Congratulations!");
else
 Info("Go to...");

See Also

msgBox

Z

Syntax

int Z

Definition

The Z variable contains the number of channels (a.k.a. planes) in
the image. This includes all color channels and any additional
alpha channels available.

See Also

planes, planesWithoutAlpha

zoomFactor

Syntax

int zoomFactor

Description

An integer between 1 and 16 to indicate the current zoom factor
of the proxy preview window, or 0 if the proxy zoom factor has
not yet been set. (In the current implementation, the zoomFactor
variable is essentially the same as the built-in scaleFactor
variable.)

Example

%ffp

ctl(0): STATICTEXT, "Please right click on the preview to
set a cross.", size=(100,20)

OnCtl(n): {

 if (n == CTL_PREVIEW && e == FME_RIGHTCLICKED_DOWN) {
 j0 = getPreviewCoordX() * zoomFactor;
 j1 = getPreviewCoordY() * zoomFactor;
 doAction(CA_PREVIEW);
 }
 return false;
}

ForEveryTile: {

 int g, h, z, color;
 int PreviewX = j0/zoomFactor;
 int PreviewY = j1/zoomFactor;

 // Calculate color of the cross
 color = (src(PreviewX, PreviewY, 0) + src(PreviewX,
PreviewY, 1) + src(PreviewX, PreviewY, 2)) /3;
 if (color > 128 && color < 196) color=0;
 if (color > 64 && color < 128) color=255;
 else color =255-color;

 // Display Cross
 if (doingProxy){
 for (z=0; z < Z; z++) {
 for (g=-7; g < 8; g++)
 if (g < -1 || g > 1) pset(PreviewX + g, PreviewY,
z, color);
 for (h=-7; h < 8; h++)
 if (h < -1 || h > 1) pset(PreviewX, PreviewY + h,
z, color);
 }
 }

 return true;
}

See Also

Constants, scaleFactor, setZoom

Appendix
Known bugs
New in FM 1.0
Filter Templates
Demonstration Source Codes
VK Codes
Windows UI Color Constants
Filter Specifications
Plug-in compatible hosts
FilterMeister compatible hosts
Style Guide
Syntax

Known Bugs
Floating point overflow

Using a large number of floating-point (datatypes float and/or
double) in a single statement can cause problems wherein the
result will be unpredictable. Code will continue to run, but all
floating-point calculations after the first occurrence of the bug
will be unreliable.

Generally this will not occur but when some floating-point
intensive functions are used (such as iget, rgb2lab, lab2rgb,
rgb2hsl and hsl2rgb), problems may appear more quickly. The
order in which these functions appear in the statement heavily
influences this bug.

As a rule of thumb, always put the functions before the other
parts. As such...

double value = iget(100., 100., 0, 0, 3) * 0.5; // This
works

Instead of the following...

double value = 0.5 * iget(100., 100., 0, 0, 3); // This
DOES NOT work

Image width of 1 pixel

If the image width is only 1 pixel an error occurs:

unexpected NULL outData

Signed / Unsigned operands

No difference between signed and unsigned operands of /,%,>>

A: x + y ? a : Info("0x8000000u/2u %x", 0x8000000u/2u) //
unsigned: 0x40000000
A:x + y ? a: Info("0x8000000u%5u = %i", 0x8000000u%5u) //
unsigned: 3
A:x + y ? a: Info("-2>>1 = %i", -2>>1) // signed: -1

Click Drag

setClickDrag(1): (right mouse key)

Preview flickering when pressing right mouse key and writing
text.

Pressing Alt-Key once slows down update frequency.

%ffp
ctl(0): STATICTEXT
ctl(CTL_PREVIEW): preview(mousemove)

OnFilterStart:
{
 setClickDrag(1);
 return false;
}

OnCtl(n):
{
 if (n==CTL_PREVIEW && e==FME_MOUSEMOVE)
 setCtlTextv(0, "%i", getPreviewCoordX());
 return false;
}

requestRect()

Does not work with selections or zooms other than 1 (100%)

Variables not updated

In the OnFilterStart: handler system variables like scaleFactor, X,
Y, x_start, ... are not yet updated after changes and have still old
invalid values.

General Improvements in FilterMeister Version 1.0

Alpha mt5c07 (1.0 Alpha mt5c07) - 12 November 2015

Alpha "As-Is" release. If you do not require the following
specific changes, it is recommended that you continue your
present development with the current mt5c06 "stable"
release until such time that a fully regression-tested version
is released.
Contains a fix for the fillArray and ffillArray crashes with
Arrays larger than 2GB.
Contains a string literal pool twice as large as the previous
release (now 128KB).
Full release notes are here: Release Notes for FM 1.0
mt5c07
You can download this version from the FilterMeister
Website: http://www.filtermeister.com/fmbeta/

Beta 9g (1.0 Beta 9g) - 21 February 2014

Please do not use this version to produce release-able
filters until it has undergone considerably more testing!
An alpha-quality release, currently available on 64-bit only.
The main difference from 1.0.9f is the ability to create 64-bit
plug-ins (as well as 32-bit plug-ins).
Filters created in FM64 can load images with a maximum
vertical or horizontal resolution of 300,000 pixels (up from
30,000).
Exception handling isn't yet supported in FM64, so a
Memory Access Violation could (will?) crash the host
program.
DLL loading, multithreading, scripting and floating point
math may all encounter problems in this alpha version.

http://www.filtermeister.com/fmbeta/

Beta 9f (1.0 Beta 9f) - June 2011

Could probably be regarded as the latest stable release.
Many commercial plug-ins have been released with Beta 9f.
Fixes some issues with registering FilterMeister on
Windows Vista systems & newer.

Beta 9e (1.0 Beta 9e) - 18 April 2010

Please do not use this version to produce release-able
filters until it has undergone considerably more testing!
This is an experimental release in that it was built on a new
platform from sources that have only recently been
updated, and it has received almost no testing.
The main difference from the previous release (1.0.9d) is
that the problem with iget when accessing tile buffers in 16-
bit mode has been fixed. (Note that this is also a non-
scripting version; there are still problems to be resolved in
the scripting version.)

Beta 9.1 (1.0 Beta 9.1) - February 2009

Scripting
Scripting Support was added. FM plug-ins can now be
scripted in Photoshop, PSP and Debabelizer and can
be used as smart filters in Photoshop CS3 and CS4.
Scripting does not work in Fireworks yet, although FM
plug-ins can be used as live effects, but this is not
recommended, because they display the dialog all of
the time. By default all user-defined control are
scripted unless you add "scripting=off" to the control
definition or use setCtlScripting(n, false). FM
automatically sets controls to the values that were
received by the host through scripting. This is done
before the OnFilterStart handler. Make sure that your

filter checks the new doingScripting variable, which
indicates if script values were received, and that it
does not overwrite control values from a file or the
registry. But you can also manually get and set script
values. checkScriptVal(n) lets you check if a script
value was received or not and getScriptVal(n) lets you
retrieve the script value. In the OnCtl handler if
n==CTL_OK && e==FME_CLICKED, you can also
manually set the script values, which are returned to
the host, with enableScriptVal(n,-1) and
setScriptVal(n,val). Otherwise FM will automatically
pass the values of all scripting-enabled controls to the
host.
There is also a non-scripting version of FM included in
the file AfhFM10Beta91_NoScripting.zip for users who
want to create non-scriptable plug-ins.
New UniqueID property which is necessary for
scripting. FM generates a new random UniqueID at
every execution and compilation, but better set it
yourself in your filter code.
Added displayDialog constant. 1 when a dialog is
displayed, 0 when not. Use this to differentiate
between normal invocation or invocation through "last
filter" or the scripting system.

Multithreading
waitForThread() now offers -1 as the third parameter
for deactivating the message pump. This will block the
interface as long as waitForThread is running, but also
help to avoid some problems.
Added createSync(), waitForSync() and deleteSync()
for barrier synchronization of threads

Other Improvements
Functions for allocating memory through the host:
allocHost(size) allocates the memory and returns the
buffer ID. lockHost(bufferID) returns the memory
pointer. freeHost(bufferID) deallocates the memory.

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/checkscriptval.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getscriptval.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/enablescriptval.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setscriptval.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/createsync.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/waitforsync.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/deletesync.html

p () y
These functions have the advantage that the host (at
least Photoshop) will provide additional free memory if
necessary. Alternatively use the array functions if you
additionally want to have automatic deallocation.
copyResToArray() now tries to open a file using the
resource name in case it does not find a resource.
__getArray(), __putArray(), __fgetArray() and
__fputArray() are fast versions of these array
functions. They do not do any border checking, so they
may produce error messages or even crashes if not
used properly.

Dialog Stuff
New createFont(), deleteFont() and setCtlFont()
functions. You can use up to 32 different fonts in FM
now. The fonts are deleted automatically when FM
exits.
New updateAnchors(), lockCtlScaling() and scaleCtls()
functions. The new NoCtlScaling and CtlScaling
control properties can be used to temporarily stop and
reactivate control repositioning and scaling.
Set default tooltip style to normal (should have been
normal style already, but balloon was wrongly set as
default style). Added enableToolTipBalloon() function,
taking a boolean to set normal (false) or balloon (true)
style tooltips for the entire plug-in. Returns boolean
indicating old style.
Improved tab controls; You can now use tabs on tab
sheets; recursive tabs.
Improved tab controls; if tab control is disabled,
children controls are disabled as well (if visible).
Fixed visibility issues of controls on tab.
setCtlTab() now allows to remove controls from tab
controls. To do that use -1 as the second and third
parameter.
New getCtlTab() function

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/copyrestoarray.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/createfont.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/lockctlscaling.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/scalectls.html

Added ctlEnabledAs(n). Returns the "enabled" state of
control "n" as it is rendered based on parents (e.g. a tab
control), as opposed to just it's internal state.
The Mousemove, mouseover and mouseout events are
now only triggered for the button areas of a tab
control and not for the whole tab control
The previous value is now correctly set for the
FME_CLICKED event of tab controls
Added setCtlOrder() function for changing the z-order
of controls
New setCtlPixelPos() function
New FME_CLICKED and FME_DBLCLK events when
the user clicks or double clicks on a slider label
New setCtlDefVal() and defval control property for
setting a default value. This default value is set when
the user double clicks on the slider label.
New getDialogHandle() and getCtlHandle(n) functions
for getting the window handle of the dialog or a
control. This can be useful if you want to access the
dialog or a control from a DLL.
New tool tip constants: TTF_CENTERTIP,
TTF_RTLREADING, TTF_TRACK, TTF_ABSOLUTE,
TTF_TRANSPARENT for setCtlToolTip()
New edit control constants: ES_LEFT, ES_CENTER,
ES_RIGHT, ES_MULTILINE, ES_UPPERCASE,
ES_LOWERCASE, ES_PASSWORD,
ES_AUTOVSCROLL, ES_AUTOHSCROLL,
ES_NOHIDESEL, ES_OEMCONVERT, ES_READONLY,
ES_WANTRETURN, ES_NUMBER for setCtlStyle()

setPixel Functions
Added setBitmapTile(int x, int y, int iName, int
tileWidth, int tileHeight, int tileIndex)
Added setBitmapStretch(int x, int y, int iName, int
width, int height)
Added setBitmapTransparent(int x, int y, int iName,
UINT color)

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getdialoghandle.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getctlhandle.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlstyle.html

)
Added setBitmapStretchTransparent(int x, int y, int
iName, int width, int height, UINT color)
Fixed issue with startSetPixel(). When recompiling
using autoload, endSetPixel() may not be called for
drawing in progress, thus leaking resources. Now
startSetPixel() destroys old resources before starting
new.
Added setBitmap(int x, int y, char * name) to draw an
embedded bitmap or file to ownerdraw. Clips properly,
negative x/y is allowed (clips left/top). Does not
switch GDI/DIB mode.
Added setRectGradient(int left, int top, int right, int
bottom, unsigned int color_topleft, unsigned int
color_bottomright, bool horizontal). Draws gradient
rectangle. Set boolean false to draw vertical gradient.
Does not switch GDI/DIB mode.

Beta 9d (1.0 Beta 9.0d) - 12 June 2008

Main Improvements
Added getCtlItemCount(), including support for the
CC_TAB class.
Added extended return values to getArrayDim.
Added Harry's multithreading API: countProcessors,
triggerThread, waitForThread, isThreadActive,
getThreadRetVal, terminateThread.
Added a set of Critical Section APIs:
createCriticalSection, enterCriticalSection,
tryEnterCriticalSection, leaveCriticalSection,
deleteCriticalSection.
Added more manifest constants: INFINITE, VTA_LEFT,
VTA_RIGHT, VTA_BOTTOM, VTA_TOP,
WAIT_TIMEOUT, WAIT_FAILED, WAIT_OBJECT_0,
WAIT_ABANDONED, WAIT_ABANDONED_0,
WAIT_IO_COMPLETION.

Bug Fixes
A crash in setCtlThumbSize was fixed.
A bug which caused the flashing focus highlight on an
anchored STANDARD or SCROLLBAR control to fail to
track the actual thumb position while resizing the
dialog has been corrected.
A bug in which certain Array resources were never
released has been fixed.

Known Problems
In general, this is a preliminary implementation of
multithreading. Some problems at present are:

There is no direct support yet for Thread Local
Storage (TLS); instead, the entire FM context
record is treated as TLS. This means that global
and static variables will actually behave as though
they are TLS. The only workaround to provide
true shared global or static storage is to cache a
variable in, say, the low or high range value of a
user-defined control, using the setCtlRange and
getCtlRange APIs. (Do not try to use the actual
value of a control for global storage, since
current control values are cached in the FM
context record, and therefore act as TLS.)
Many of the basic FM API functions (such as
updatePreview, setCtlTextv, etc.) are not yet
thread-safe. If you want to call such a function in
a threaded environment, you should explicitly
serialize access to the function by surrounding
the call to it with an
enterCriticalSection/leaveCriticalSection pair
of calls. In future releases, FM APIs will be made
thread-safe whenever possible.
At present, the getThreadRetVal API is unable to
return the correct exit code value of a thread.
The timeout value in the waitForThread API is
very inaccurate (e.g., off by 3x or more).

y (g y)
There may still be some hidden resource leaks.

Beta 9c (1.0 Beta 9.0c) - 28 May 2008

Main Improvements
Implemented the '!Y' descriptor (i.e., the current year
formatted as 4 decimal digits) in formatString.
Implemented ffillArray, which is the floating-point
analog of fillArray, and allows you to quickly fill an
Array with a specified 16-, 32-, or 64-bit floating-point
value.
Implemented unscaled pointer subtraction.
Warn that all pointer arithmetic is (currently) unscaled.
Warn that pointer comparisons are not yet
implemented.
A floating-point value (float or double) can now be cast
directly to an int with the (int) cast operator.
The compiler output pane in the Advanced (>>>) mode
of the Editor display was widened by 40 DBUs to allow
for more legible displays. The Font button was also
repositioned.

Bug Fixes
Fixed a regression bug in Beta 9a and Beta 9b which
causes a crash when using the msk() API.
In the Advanced (>>>) mode Editor display, fixed a bug
in the SDL dump of escape codes in strings when a
non-ASCII char was treated as signed.

Beta 9b (1.0 Beta 9.0b) - 8 May 2008

Bug Fixes
A problem with parsing floating-point numbers in the
filter source code at Design time, when the default
locale is not "English", has been fixed. (This bug was
accidentally introduced in release 9a.)

Beta 9a (1.0 Beta 9.0a) - 5 May 2008

Main Improvements
The maximum size of all global and static variables you
can allocate has been increased from 400 bytes to 40
KB (i.e. 10,000 int variables or 5,000 double variables,
or some combination thereof).

Bug Fixes
A minor bug in getAppTheme() was (hopefully -- HH,
please check!) fixed.

Other Notes
This release was generated from the merger of Harry's
and Alex's most recent source databases. No extensive
regression testing has yet been performed against the
previous release (1.0 Beta 9.0), so there is a possibility
that some regression errors may be found; if so, please
report them ASAP to the FMML group.

Beta 9 (1.0 Beta 9.0) - April 2008

Main Improvements
FM can now use up to 3 GB of RAM under 32bit
Windows (2000, XP, Vista). Under 64bit Windows it can
now use up to 4 GB of RAM.
The FilterMeister Language (FML) is finally here. It is
an alternative to the FilterFactory Plus (FFP) language
that was used so far. To write code in FML you need to
start your code with %fml instead of %ffp. In FML you
can declare global variables outside handlers and use
control definitions like ctl(0): "Slider 1" inside handlers.
You can also place variable declarations anywhere and
do no need to put them at the top.
You can now access DLLs with the following functions:
loadLib(), getLibFn(), callLib(), fcallLib(), callLibFmc(),
fcallLibFmc(), freeLib(). For third party DLLs you need

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/calllibfmc.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/fcalllibfmc.html

to use callLib() and fcallLib(). The callLibFmc functions
pass the FilterMeister context record as the first
parameter to the called DLL function. This can be
useful if you want to create your own DLLs for
FilterMeister. FMLibTest_SourceCode.zip in the
sourcecode\democodes subfolder contains a simple
example for creating your own DLL with VC++.
With the help of a resource editor you can now create
multi-filter plug-ins with FM. FM now contains 32
entry points named ENTRYPOINT00 to
ENTRYPOINT32. To have more than one filter in a .8bf
file you need to use a resource editor to duplicate the
pipl resource, change the 00 in ENTRYPOINT00 to 00,
01, 02 ... 29, 30 or 31 and edit the filter name in the pipl
resource. If you copy a pipl resource from another FM
.8bf file, you only need to change ENTRYPOINT00. In
your filter code you can use the new ENTRYPOINT
variable, which contains a value between 0 and 31, to
check which menu item was selected. Future versions
of FM will not require the use of a resource editor to
create multi-filter plug-ins.
All FM controls now reposition or scale automatically
when the dialog is resized. All controls are anchored to
the right side of the dialog by default. Only the
preview, progress bar, zoom control and the OK and
Cancel buttons have a different anchoring. If you want
to change the anchoring of a control, you can use the
Anchor control attribute or setCtlAnchor(). You can
use a combination of the following constants:
ANCHOR_LEFT, ANCHOR_RIGHT, ANCHOR_TOP and
ANCHOR_BOTTOM. By default controls have
ANCHOR_RIGHT set.
The .8bf plug-ins created with FM now have a resizable
dialog, so you do not need to use a resource editor to
enable it anymore.

Dialog Stuff

The position and size of the preview, progressbar and
zoom controls are now kept between sessions.
Scrollbar, standard, trackbar and slider controls now
correctly work for value ranges below -32768 and
above 32767.
You can now use more than 1024 characters for the
text of edit, statictext, checkbox and radiobutton
controls. But you can only read the first 1024 bytes
with getCtlText() from them.
New setCtlThumbSize() function and thumbsize
property for setting the thumb size of scrollbar,
standard, trackbar and slider controls. For trackbar
and slider controls you also need to use the
FIXEDLENGTH attribute to make it work.
You can now change the background color of the
preview with setCtlColor(CTL_PREVIEW, ...) or the
color attribute. To remove the color again, simply use
-1 as the color.
New getDialogPos() function for retrieving the
position and size of the full window or the client area
of the window.
If you remove the progressbar, zoom control or
preview frame with "ctl(...):none", they do not appear
again at the second invocation.
setCtlFocus() and checkCtlFocus() work again for
CTL_PREVIEW.
refreshCtl() now also affects the labels and edit boxes
of standard and slider controls.
insertMenuItem() does not accept values below 1 for
the second parameter anymore.
Closing down FilterMeister with the x title bar button
and no source code loaded caused a memory error
message. This was fixed.

XP/Vista Theme & Tab Control
getAppTheme() returns zero if the application that
runs FM has visual styles disabled or 1 if it has visual

styles enabled.
setCtlTab(n,t,s) or the new "Tab=(t,s)" attribute lets you
assign controls to the sheets of a tab control. By doing
so the controls automatically appear or vanish if a tab
sheet is selected. You do not have to write some FM
code to do that. Additionally if the tab control uses an
XP/Vista theme, the color of checkboxes, radiobuttons
and ownerdraws is automatically set to the color of the
tab control.
getCtlColor() now returns the background color of tab
controls. If the XP/Vista theme is activated, it will
return an approximation of the tab background color,
because themed tab controls have a gradient
background.
If you use enableCtl() on a tab control, the controls
that are assigned to the tab control also become visible
or invisible.
If you use refreshCtl() on a tab control, it now also
refreshes the controls that are assigned to the tab
control.
Bug Fix: setCtlVal() now works correctly for tab
controls.
Bug Fix: When using setCtlText() on a tab control, it
removes the old tab sheets and does not add
additional tab sheets anymore.
Bug Fix: setCtlItemText() does not add additional tab
sheets to tab controls anymore if the specified tab
sheet already exists.

Other Improvements
Bug fix: Images that are only a few pixels wide or high
produced an error message. This was fixed by setting
the initial preview zoom to an appropriate value.
Arrays now support 16bit float values. To store them
use fputArray() and to retrieve them use fgetArray().
For 16bit float values please use 2 as the last parameter
in allocArray().

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlitemtext.html

y()
getSysMem() returns some values about the system
memory.
sizeof() returns the size of a few basic types (e.g.
sizeof(int)), integer and real constants, string literals,
and a few basic scalar variable types. Other uses of
sizeof will still result in compiler error or bug
messages, or even incorrect results.
formatString() (which is also used by other functions
like setCtlTextv() and setDialogTextv()) supports
HTML entities and new special codes
fmax() and fmin() now take a variable number of
arguments.
fc2d() now correctly asks for two instead of four
parameters.
triggerEvent() now only accepts a control number
from 0 to 256 for normal events and an unlimited
control number for FME_CUSTOMEVENT without
displaying a memory error message.
For floor(), ceil(), chop(), and round() inline code is
produced, which makes them much faster.

setPixel Functions
Bug fixed in setThinLineAA()
New setRectangle() function
setText() and setTextv() were updated

Beta 8.7 (1.0 Beta 8.7) - January 2008

Bug Fixes
The black borders around the edit boxes of standard
and slider controls vanished on the second invocation
in Beta 8.6. This was fixed.
The labels of the checkboxes in Advanced (>>>) mode
are visible again under XP/Vista.
The folder of the .ffp file is now set as the working
folder on Compile. If no .ffp file has been loaded or

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setthinlineaa.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setrectangle.html

saved, the filterInstallDir is set as the working folder
on Compile. This avoids problems with embedded files
not being found on Compile e.g. if a preset has been
opened from another folder.
The dialog events are now cleared on Compile to avoid
that they are triggered for other filter code in which
they are not set.

Improvements
Arrays now support float and double values. To store
them use fputArray() and to retrieve them use
fgetArray(). For float values use 4 and for double
values use 8 as the last parameter in allocArray().
If the user cancels the filter (e.g. by pressing the ESC
key or x button in the title bar or pressing Enter when
the Cancel button has the input focus or choosing
"Close" from the menu of the title bar icon), an event
with n=CTL_CANCEL and e=FME_CLICKED will now
be triggered. So you do not need to use
"Dialog:CancelEvent" or setDialogEvent(2) anymore for
these cases.
The number of global strings was increased from 10 to
20. You can access them by using str0 up to str19.
New DESIGNTIME variable which lets you check if the
filter is running in FilterMeister (DESIGNTIME==true)
or as a standalone plug-in (DESIGNTIME==false).
getBufferAddress and pointer_to_buffer now
support the T3 and T4 buffers. The parameters are 4
and 5.

setPixel Functions
New setAngleArcFill and setAngleArc functions
New setTextv() function that supports formatted text

Installation
New multi-lingual installation
The HTML Manual now offers more information
including an updated command reference.

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getbufferaddress.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setanglearcfill.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setanglearc.html

Beta 8.6 (1.0 Beta 8.6) - November 2007

Improvements
FM does not crash anymore on Make when embedding
bitmaps in a plug-in
In some host applications (e.g. SignLab, Image
Analyzer, Pixopedia, NiGulp, GIMP) memory error
messages appeared and/or horizontal preview
dragging was not possible. This is fixed now.
Some host applications (e.g. GIMP, PhotoBrush,
PluginMaster) do not display a color dialog.
chooseColor now displays the normal Windows color
dialog for these applications.

Dialog Stuff
Bug fix: Check boxes do not have a black label anymore
when the dialog theme is switched on.
The styles of the label and edit box of standard and
slider controls are now saved between filter
invocations
setCtlBuddyStyle, setCtlBuddyStyleEx,
clearCtlBuddyStyle, clearCtlBuddyStyleEx now save
the styles between filter invocations
To make sure that your plug-in always uses the
appropriate system colors please use the new SysColor
option instead of the Color option when defining
controls, e.g. "ctl(0): syscolor=COLOR_BTNFACE" or
"Dialog: SysColor=COLOR_BTNFACE". There is also a
FontSysColor option. These options correspond to
new setDialogSysColor, setCtlSysColor and
setCtlFontSysColor functions.
The new scrollFactor variable lets you increase the
scroll speed in the preview. scrollFactor=1 is the
default.

SetPixel Stuff

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlbuddystyleex.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/clearctlbuddystyleex.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setdialogsyscolor.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlsyscolor.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlfontsyscolor.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setthinlineaa.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setthinellipseaa.html

A bug in setThinLineAA and setThinEllipseAA has
been fixed.
setEndCaps sets the method used to cap the ends of
lines with the constants PS_ENDCAP_ROUND,
PS_ENDCAP_SQUARE and PS_ENDCAP_FLAT.
setJoin sets the method used to join thick lines at
corners of shapes with the constants
PS_JOIN_ROUND, PS_JOIN_BEVEL and
PS_JOIN_MITER.
setInsideFrame determines whether the pen lines of
shapes are drawn on the edge or inside the edge.

Others
Floating point versions of r2x, r2y, c2m and c2d are
now available. They are called fr2x, fr2y, fc2m and
fc2d.
FME_INIT is now triggered after hitting the Compile
button. This will make it easier to debug the filter
code.
A cell_preserve alias was added for cell_initialize().
cell_preserve(1) keeps the values of put/get cells
between preview updates and filter invocations.
New directory/folder functions: chdir lets you change
the working folder, getcwd returns the current
working folder, mkdir creates a new folder and rmdir
deletes a folder.

Beta 8.5 (1.0 Beta 8.5) - November 2007

Main
The ForEveryTile code buffer size was increased from
256K to 512K.
The literal pool was doubled, so that you can use more
floating-point and string constants in your code.

Dialog Theme

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setthinlineaa.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setthinellipseaa.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setendcaps.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setjoin.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setinsideframe.html

The FM title bar now has no theme on first invocation.
If you activate the dialog theme in your filter code with
setDialogTheme(1) or "Dialog: Theme=on", the titlebar
will not lose its theme anymore like in previous FM
versions.
Activating the dialog theme will now also activate the
theme for all controls unless you specify that a control
should not have a theme.
You can now use setCtlTheme(n,-1) or the control
attribute "theme=default" to make a control use the
same theme as the dialog. This is the default setting
now.

Events
Three new event constants replace old event
constants: FME_CHANGED replaces
FME_VALUECHANGED, FME_SETFOCUS replaces
FME_SETEDITFOCUS and FME_KILLFOCUS replaces
FME_KILLEDITFOCUS. For backward compatibility
the old event constants are still valid and work.

SetPixel Stuff
The setPixel functions do not produce a crash
anymore if you apply them thousands of times.
The new setPenWidth function lets you change the
broadness of drawn lines.
setThinLineAA and setThinEllipseAA draw anti-
aliased lines and ellipses.
startSetPixelSS(n, factor) and endSetPixelSS(n) let you
do super sampling for smoother results. The second
parameter in startSetPixelSS is the factor by which the
canvas will be larger.
startSetPixelBuffer(width, height) lets you draw on an
internal buffer. So you do not need any controls to be
present, so you can even use it after the user pressed
OK on the plug-in dialog. Use the getPixel(x,y)
function to read out the buffer. endSetPixelBuffer
destroys the buffer.

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setdialogtheme.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setpenwidth.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setthinlineaa.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setthinellipseaa.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/startsetpixelss.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/endsetpixelss.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/startsetpixelbuffer.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getpixel.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/endsetpixelbuffer.html

getSetPixelWidth and getSetPixelHeight return the
size of the canvas or buffer. They only work if used
after startSetPixel, startSetPixelSS or
startSetPixelBuffer.

New Controls
New TAB control.

Control Value: The selected tab sheet.
Events: FME_CLICKED.
Styles: scrollopposite, bottom, right, multiselect,
flatbuttons, forceiconleft, forcelabelleft, hottrack,
vertical, tabs, buttons, singleline,multiline,
rightjustify, fixedwidth, raggedright,
focusonbuttondown, ownerdrawfixed, tooltips,
focusnever (see
http://msdn2.microsoft.com/en-
us/library/bb760549.aspx).

New EDIT control.
Control Value: Not used.
Events: FME_CHANGED, FME_SETFOCUS,
FME_KILLFOCUS.
Styles: left, center, right, multiline, uppercase,
lowercase, password, autovscroll, autohscroll,
nohidesel, oemconvert, readonly, wantreturn,
number (see http://msdn2.microsoft.com/en-
us/library/bb775464.aspx).

New SLIDER control (consisting of a label, trackbar
and edit box)

Events: like STANDARD control:
FME_CHANGED, FME_SETFOCUS (with
mouseover style)
Styles: like TRACKBAR control

More Dialog Stuff
The top border of the edit box of standard controls
(and sliders) is not cut off like in previous FM versions
under Windows XP.

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/startsetpixelss.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/startsetpixelbuffer.html
http://msdn2.microsoft.com/en-us/library/bb760549.aspx
http://msdn2.microsoft.com/en-us/library/bb775464.aspx

You can now add "editstyle=border",
"editstyleex=staticedge" or "editstyleex=clientedge" to
the control definitions of standard and slider controls
for changing the look of the editboxes.
The new setCtlBuddyStyle, setCtlBuddyStyleEx,
clearCtlBuddyStyle and clearCtlBuddyStyleEx
functions were added for changing the style of the
labels and edit boxes of standard and slider controls.
Use 1 as the middle parameter to change the edit box
and 0 to change the label.
The trackbar does not have a dark grey background
color by default anymore
The color of the list box is now set automatically to
avoid redraw problems that occurred if you did not
explicitly set the color in previous versions
New getSysColor function for grabbing a system color.
You can use the COLOR constants with it, e.g.
COLOR_BTNFACE.
New setCtlStyle, setCtlStyleEx, clearCtlStyle and
clearCtlStyleEx functions
setDialogMinMax works correctly for negative
parameters now
setCtlItemTop and getCtlItemTop for setting and
getting the top visible item in a combo box or list box
setCtlItemText and getCtlItemText for setting and
getting the text of a combo box, list box or tab control
item
deleteCtlItem for deleting an item of a combo box, list
box or tab control
deleteCtlItems for deleting all items of a combo box,
list box or tab control
fillDir fills a combo box or list box with file and folder
names
getCtlPos now also supports the preview.
The new checkDialogFocus returns true if the FM
dialog is the active window and false if it isn't.

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlbuddystyleex.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/clearctlbuddystyleex.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlstyle.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlstyleex.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/clearctlstyle.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/clearctlstyleex.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlitemtop.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getctlitemtop.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setctlitemtext.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/filldir.html

Buffers & Arrays
A fourth t-buffer was added. Use t4get and t4set etc.
t3get and t3set did not work previously. They were
fixed.
iget supports the third and fourth t-buffer now
src previously returned zero instead of 32768 for the
alpha values of 16-bit images whose coordinates were
outside the image borders. This was fixed.
allocArray and allocArrayPad now by default allocate
memory from Photoshop. Previously they allocated
memory from Windows, but if Photoshop had grabbed
large portions of the available memory, FM was not
able to access it and failed because not enough
memory was available to it. If Photoshop cannot
provide the necessary memory, FM tries to get it from
Windows. (So it is best if you recommend to the users
of your plug-ins to set the Photoshop Memory Usage
preference setting to a high value.) If FM is not running
in Photoshop, the memory allocation will still be done
by the host, but that usually means that the memory
will be allocated from Windows, because most hosts
do not have their own memory management system
like Photoshop.
You can switch back to the old behavior (Windows
allocation) by using set_array_mode(0). This is
necessary if you want to have reallocatable arrays,
because Photoshop allocation does not allow
reallocation. set_array_mode(1) switches back to
Photoshop allocation.
The t-buffers are allocated by Photoshop now, which
will increase performance in Photoshop.

Resources
New copyResToArray(resname, restype, arraynr)
function for copying a file resource to an array.
Alternatively getResAddress(resname, restype) returns
a pointer to the specified file resource and

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/copyrestoarray.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getresaddress.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getressize.html

getResSize(resname, restype) returns the size of the
file resource.
You can now embed any kind of file by using the Other
item, e.g. Embed: Other="Test.txt". This file will be
embedded as a "FMDATA" resource type. You can
access e.g. with
copyResToArray("FMDATA","TEST.TXT",0);

Events
The FME_DRAWITEM event now works for the
preview. To activate it you need to add
"ctl(CTL_PREVIEW):preview(drawitem)" at the top or
"setCtlProperties(CTL_PREVIEW,CTP_DRAWITEM);"
somewhere.
The precision for FME_MOUSEOVER and
FME_MOUSEMOVE events was increased from 250
ms to 20 ms. For the preview these events are and
always were triggered instantly.
New FME_INIT event is triggered before the FM
dialog is displayed. To activate this event you need to
use "Dialog: initevent" or setDialogEvent(1). You can
use the previous value to check if the plug-in is
executed for the first time in the host. In that case
previous==false.
New FME_CANCEL event is triggered when the user
exits the plug-in without applying the effect. At this
point the dialog already has vanished and changes to
global variables are not preserved anymore for the
next invocation. To activate this event you need to use
"Dialog: cancelevent" or setDialogEvent(2).
To activate the new FME_KEYDOWN and
FME_KEYUP events you need to use "Dialog:
keyevents" or setDialogEvent(4) in your code. The n
value of the events contains the VK code of the
pressed key. If you want to check for Shift, Ctrl, Alt etc.
you need to use getAsyncKeyStateF().

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getressize.html

The new setDialogEvent function lets you activate the
FME_INIT, FME_CANCEL, FME_KEYDOWN and
FME_KEYUP events. To deactivate these events use
clearDialogEvent. Use 7 as the parameter for
activating or deactivating all events.

Others
Tool tips work again under Windows 2000/XP/Vista.
To enable the tool tips for statictext, image and frame
controls you need to add the notify attribute, e.g.
ctl(0): statictext(notify), "Test", tooltip="Here I am"
The following floating point constants were added:
M_E, M_LOG2E, M_LOG10E, M_LN2, M_LN10, M_PI,
M_PI_2, M_PI_4, M_1_PI, M_2_PI, M_2_SQRTPI,
M_SQRT2, M_SQRT1_2

Beta 8.4 (1.0 B8) - September 2007

Improvements
DEP problem was fixed. Even if DEP is activated, FM
filters and FM plug-ins will be executed.

T-Buffers
Third t-buffer available now (t3get,t3set etc.)
The t-buffers support 16-bit images now. But only
tget,t2get,tset,t2set,t3get and t3set work with 16 bit
images. The following functions will not work correctly
with 16bit data: tgetp,tsetp, tgetr, tsetr and their
equivalents for the second and third t-buffer.

Dialog Stuff
getCtlText for retrieving the text of a control
Combo boxes and list boxes now accept text that is
longer than 1023 bytes, which means that you can add
more items to them. However, getCtlText will only
return a combo box or list box text that is 1023 bytes
long.

getCtlPos for finding out the position and size of a
control
setDialogTheme and setCtlTheme for switching
XP/Vista themes on and off. Does not work correctly
at the moment.
getPreviewCursor will return the resource number of
the current preview cursor
getCtlClass tells you what type of control a certain
control is.

Others
getSpecialFolder function
getArrayAddress and getBufferAddress return the
memory address of arrays and buffers
blend now also works with 16-bit values if you use
set_bitdepth_mode(16)

Beta 8 (1.0 B8) - March 2007

Improvements
Bug Fix: Plug-ins that were created with previous
versions of FM crashed under Windows Vista if there
was more than 2GB RAM available.
The code buffers were increased:

Maximum source code size is now 800,000 bytes
The OnCtl buffer was increased from 256k to
512K
Larger compiler buffer to handle more complex
algorithms

SetPixel Stuff
startSetPixel, setPixel and endSetPixel work much
faster and flicker-free
getPixel for reading pixel values from the ownerdraw
control
setFont lets you choose the font name, its size, angle,
boldness, and italics

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setdialogtheme.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getarrayaddress.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getbufferaddress.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getpixel.html

setText lets you draw a certain text with the chosen
font, color and alignment (Available alignment
constants: TA_BASELINE, TA_BOTTOM, TA_TOP,
TA_CENTER, TA_LEFT, TA_RIGHT,
TA_NOUPDATECP, TA_RTLREADING, TA_UPDATECP,
VTA_BASELINE, VTA_CENTER)
setLine draws a line
setEllipse draws an ellipse
setEllipseFill draws a filled ellipse
setRectFrame draws a rectangle
setRectFill draws a filled rectangle
setFill fills the whole ownerdraw control with a certain
color e.g. setFill(getCtlColor(n))

Other Things
checkCtlFocus function for checking if a certain
control has the focus.
Bug Fix: The dialog of created plug-ins is not resizable
by default anymore. You need to use a resource editor
to make it resizable if you support dialog resizing in
your plug-in.
AutoLoad button for automatically loading and
compiling the .ffp file if it was changed on disk in the
meantime. Not sure if it works correctly in Photoshop.

Beta 7 (1.0 B7) - June 2005

New Features
Shift clicking the Load button reloads and compiles
the current .ffp file

Improvements
trackPopupMenu has one more parameter for menu
alignment now. Set it to zero for default behaviour or
use the following constants: TPM_RIGHTBUTTON,
TPM_LEFTALIGN, TPM_CENTERALIGN,
TPM_RIGHTALIGN, TPM_TOPALIGN,

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setellipse.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setellipsefill.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setrectframe.html

TPM_VCENTERALIGN, TPM_BOTTOMALIGN,
TPM_HORIZONTAL, TPM_VERTICAL,
TPM_NONOTIFY, TPM_RETURNCMD.
setCtlProperties now works for the preview control.

Bug Fixes
src lets you read the alpha channel of Greyscale
images again
The dialog of a compiled plug-in was displayed with a
delay in Photoshop if the preview events were
activated with "ctl(CTL_PREVIEW): preview
(mousemove, mouseover, previewdrag)". Until this
problem is solved the preview events are activated
again by default.
The preview works again for 16-bit Greyscale and
CMYK images.
getCtlCoord, getPreviewCoordX and
getPreviewCoordY work correctly again for zoom
levels other than 100%
Sliders didn't update the preview in Beta 6 if there was
no ctl(0) defined.

Beta 6 (0.4.21) - May 2005

Alpha Channel Access
Transparency is finally correctly displayed as a
checkerboard pattern for 16-bit layers.
src now lets you access the alpha channel of 16-bit
layers
src can now access the transparency information from
CMYK images as well as additional alpha channels that
are created and selected in the Channel palette in
Photoshop.
Z had a maximum value of 4 previously. Now it is 5 if it
is applied to a CMYK layer. It can even have a higher

value if additional alpha channels are selected in the
Channel palette in Photoshop.
planesWithoutAlpha contains the number of image
channels without alpha channels. You can now
calculate the number of available alpha channels by
subtracting planesWithoutAlpha from planes or Z.

Selection Mask
msk for accessing the selection mask works now for 8-
bit and 16-bit images. The selection mask has values
from 0 to 255 even for 16-bit images.
New functions for calculating the smallest distance to
the selection border: calcSBD, freeSBD, getSBD,
getSBDangle, getSBDX, getSBDY. They only work for
8-bit images at the moment.

Controls
getCtlCoord function for accessing the coordinates of
the mouse over a control. It is also a replacement for
getPreviewCoordX and getPreviewCoordY. Both
functions are now internally redirected to
getCtlCoord.
setCtlFocus for setting the focus to a certain control.
getCtlRange for checking the min. and max. value of a
control.
ctl, getCtlVal and getCtlRange can now also be used
for CTL_PROGRESS to get the progress bar value and
range

Events
drawitem control property now needs to be set to
trigger FME_DRAWITEM events.
mousemove control property can now be set to
generate FME_MOUSEMOVE events for all controls.
FME_VALUECHANGED events are now triggered for
trackbars
New FME_PREVIEWDRAG event is triggered after the
preview was dragged, but before the preview is
updated. To activate the FME_PREVIEWDRAG events

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/calcsbd.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/freesbd.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getsbd.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getsbdangle.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getsbdx.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/getsbdy.html

you need to set the previewdrag control definition, e.g.
ctl(CTL_PREVIEW): preview (previewdrag)
The FME_MOUSEMOVE, FME_MOUSEOVER and
FME_PREVIEWDRAG events for the preview are now
only triggered if you specify them as a control
property. For example you can do that by adding
"ctl(CTL_PREVIEW): preview
(mousemove,mouseover,previewdrag)" at the top of
your code.

Other New Features
requestRect(x_start, y_start, x_end, y_end,
scaleFactor) for requesting an image rectangle. Lets
you read pixels outside the preview if isTileable=true.
Doesn't work after OK was pressed. restoreRect makes
sure that the preview is displayed correctly again after
requestRect was used.
findFirstFile, findNextFile and findClose for reading
file and folder names from a certain path.
fmin and fmax for finding the minimum or maximum
of two double values.
imageHRes and imageVRes double variables were
added for getting the dpi value(s) of the image.
You can now use the mouse wheel to change slider
values. You need to select the slider at first by clicking
on it or using the tab key.

Improvements
fillArray now lets you fill arrays with 8-bit, 16-bit and
32-bit values.
srcp, pgetp and psetp have been made slightly faster
getArrayString now returns the string "Not Available"
if it can't read a string. Previously it returned zero,
which caused a memory access violation error in some
cases.
set_psetp_mode(1) for making it possible to set the
alpha channel to zero with psetp
iget works on 16-bit images now.

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/requestrect.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/restorerect.html

The Dodge and Burn modes of blend have been
changed to produce a more correct result.

Bug Fixes
Problem with non-working arrays when running
FilterMeister a second time in PhotoPlus and Canvas
was fixed.
Bug with getImageTitle in PhotoPlus was fixed.
The algorithm of saturation was changed to adjust
saturation correctly.
Holding down the Shift key while dragging a slider or
trackbar won't produce any preview flicker anymore,
because the preview is only updated a maximum of 50
times per second.

Beta 5 (0.4.21) - December 2004

Larger buffers which means larger and more complex filters
can be created:

Maximum source code size is now 400K
onCtl handler: 128K -> 256 K
larger compiler buffer to handle more complex
algorithms

Resizable Window
The FM dialog is resizable by default, but the windows
of the generated plug-ins are not resizable by default.
To make them resizable, you need to use a resource
editor and change the window style to "Resizable".
New related functions: getDialogWidth,
getDialogHeight, setDialogMinMax, PixelsToHDBUs,
PixelsToVDBUs
New related events: FME_SIZE, FME_EXITSIZE
You can now resize and reposition the preview during
runtime. You have to use setCtlPos(CTL_PREVIEW, ...)
to do that. The frame around the preview will be
automatically repositioned.

To reposition and resize the preview frame, progress
bar or zoom controls please use
setCtlPos(CTL_FRAME, ...),
setCtlPos(CTL_PROGRESS, ...) or
setCtlPos(CTL_ZOOM, ...)
You can also use enableCtl to make the preview frame,
progress bar or zoom controls disappear.
Less recommended is to use deleteCtl to remove the
preview frame, progress bar or zoom controls.
setDialogSizeGrip displays a grip for resizing the
window (produces redrawing artifacts in some cases)
setDialogShowState lets you minimize, maximize or
normalize the FilterMeister window

Processing in Tiles
The needPadding variable works now. It lets you set
the size of the padding area in pixels, e.g. needPadding
= 2 for a 5x5 convolution operation. You need to set
isTileable = true to make it work.
New allocArrayPad (nr, X, Y, Z, bytes, padding)
function for allocating padded arrays
FilterMeister currently processes 100 full rows at a
time when isTileable = true. This value can be adjusted
by assigning a new value to the bandWidth variable.
For example bandWidth = 200 for processing 200 rows
at a time.
The Big Gulp check box (Advanced mode) is now
deactivated. This avoids that the whole image is loaded
to memory when processing in tiles (isTileable = true).
As a result there won't be any "Not enough Memory"
messages anymore when processing in tiles.

Drawing on Controls
New startSetPixel, setPixel and endSetPixel functions
for drawing on controls, usually bitmap, image or
ownerdraw controls.
New FME_DRAWITEM event that is triggered when
an ownerdrawn control needs to be redrawn

Event Triggering and Pseudo-Functions
triggerEvent lets you execute the code in the OnCtl
handler that is usually only executed if that event
occurs.
By checking for the new constant
FME_CUSTOMEVENT in the OnCtl handler, you can
place some custom code there that can be executed
with the triggerEvent function.

Context Menus
The FME_CONTEXTMENU event is triggered when
the user right-clicks on the dialog background
createPopupMenu creates a context menu and returns
the menu handle that is needed for the other menu
functions
insertMenuItem adds a menu item.
trackPopupMenu displays a context menu and returns
the selected menu item
destroyMenu for deleting the menu handle if it isn't
needed anymore.

Menus (ONLY FOR TESTING -> No Menu events yet, so the
selected menu item isn't passed back yet)

createMenu creates a menu and returns the menu
handle that is needed for the other menu functions
insertMenuItem adds a menu item.
setMenu for displaying the menu under the title bar
destroyMenu for deleting the menu handle if it isn't
needed anymore.

Arrays
the number of possible arrays was extended from 10 to
100.
New fillArray function for filling an array with a
certain byte value, e.g. for initializing all cells of the
array to zero.
New putArrayString and getArrayString functions for
storing strings in arrays.

New Events

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/createmenu.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/setmenu.html

FME_COMBO_DROPDOWN,
FME_COMBO_CLOSEUP are triggered when the drop
down list displays and closes again.
FME_SETEDITFOCUS, FME_KILLEDITFOCUS are
triggered when the focus is set on the edit box of a
slider and when the focus is removed again from it.

Sliders
setCtlEditSize function and editsize property for
changing the size of the edit box of standard sliders
setCtlGamma function for changing the slider
behaviour

Other
set_bitdepth_mode(mode) function. Setting mode to
16 will make the rgb2hsl, hsl2rgb and other color
conversion function treat the passed color values as
16-bit color values. Setting mode to 8 will activate the
default behaviour of these functions.
doEvents pauses the current code to update the
window and process events. Useful inside a loop that
needs longer to finish.
Several value interpolation functions:
linearInterpolate, cosineInterpolate, cubicInterpolate
and hermiteInterpolate
quickFill fills the put/get cells quickly with image
values and quickMedian calculates the median of the
values from the put/get cells quickly.
quickSort function for sorting put/get cells
getImageTitle retrieves the path or file name of the
currently processed image. Only works in Photoshop
(returns full path) and PSP (only returns file name
without file extension).
egw function was updated
New egm(a,b,value) function for edge mirroring - NOT
YET AVAILABLE! (mwvdlee)

Bug Fixes:

file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/doevents.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/cubicinterpolate.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/hermiteinterpolate.html
file:///C:/Users/k/AppData/Local/Temp/calibre_cyrorn/mxxsvp_pdf_out/OEBPS/Text/quicksort.html

ForEveryPixel and RGB handlers work in PSP 8 again
without causing a memory error
The preview displays fine and not half transparent
anymore when applying FilterMeister to a 16-bit layer
in Photoshop CS

Beta 4 (0.4.21) - June 30, 2003

Bug Fixes:
Message box that can occur under XP was removed
If compilation failed, the dialog doesn't shrink
anymore, but gets its original size back.

Beta 3 (0.4.21) - June 16, 2003

Bug Fixes:
A bug in the freeArray() function prevented the
memory of the array from being freed and even worse
kept FilterMeister itself from automatically freeing the
memory on exit

Beta 2 (0.4.21) - June 3, 2003

Dialog Changes:
All dialog controls are now displayed in classic style
under Win XP. Currently you can't activate XP styles,
but it will be possible later.
Advanced button in the editor was added again
The size of the standard slider text boxes has been
increased to fully display decimal values

Bug Fixes:
FilterMeister welcome message isn't displayed
anymore in created plug-ins.
Stack overflow problem that crashed FM was fixed
Problem with disabled editor control was fixed

Problem with freeing of allocated arrays was fixed
srcp, pgetp, tgetp, t2getp check for image boundaries
now to avoid memory error messages
The getPreviewCoord functions work precisely now
rgb2ycbcr and ycbcr2rgb work more precisely now

New Attributes:
when defining a standard control you can use the new
divisor attribute to make the slider display decimal
values. E.g. set divisor=1000 for three decimal places.
The default divisor value is 1.

New Functions:
setCtlDivisor(n,value) for having standard slider with
decimal places. value can be a value from 1 to 1000.
The default is a value of 1.

New Events:
FME_VALUECHANGED is triggered when a slider
value was changed. Returns the previous slider value in
a variable called previous.
FME_CLICKED events now return the previous value
of combo boxes in a variable called previous for combo
boxes, list boxes, check boxes and radio buttons

Beta 1 (0.4.20) - March 22, 2003

Dialog Changes:
Larger main dialog
200% larger preview
system color is used for the dialog background
system color is used for slider labels and statictext
controls
The editor window is now automatically displayed
when you start FilterMeister
The Edit >>> button was removed and instead a
Minimize button was added to the title bar of the
editor

When disabling a standard slider control, the slider
label is now disabled, too.

Larger code buffer which means that filters with a larger
and more complex code can be created:

onCtl: 64K -> 128K
ForEveryTile: 128K -> 256K

New Color Modes:
Lab48Mode
CMYK64Mode
DeepMultichannelMode
Duotone16Mode

New Functions:
pget and pgetr support 16 bit images
for registry access
for color space conversion (YUV, Lab, HSL, YCbCr)
iget for interpolated image access with 5 methods
(nearest, bisquare, bicosine, bilinear, bicubic)
srcp, pgetp etc. for accessing a whole pixel at once.
Using these functions lets you read and write image
data almost twice as fast as with src() and pset().
for drawing rectangles, circles and triangles easily
for locking the window redraw and for redrawing the
whole window, a control or a region
for setting the preview zoom (setZoom)
for reading the coordinates of the mouse pointer
above preview
for using up to 10 arrays with one, two or three
dimensions
for performing 20 different blend operation with two
image sources
for drawing a dozen two-dimensional gradients
for edge-wrapping values
for checking if keys were pressed
for getting the current Window Version, the screen
resolution and screen refresh rate.

for triggering up to 10 different timer events e.g. to
perform multi-threading-like activities
(setTimerEvent).

New Events:
FME_TIMER: for asynchronous activities (timer)
indicating left and right clicks on the preview
(FME_LEFTCLICKED_DOWN,
FME_LEFTCLICKED_UP,
FME_RIGHTCLICKED_DOWN,
FME_RIGHTCLICKED_UP)
FME_MOUSEMOVE: indicating a mouse movement
above the preview (mousemove)

FM mt5c07 "As-Is" Release Notes 11/12/2015
This is an "as-is" release for early adopters. It contains specific
fixes and enhancements needed by several filter designers. It also
contains widespread but incomplete changes to the FM compiler
infrastructure code, which have not yet been tested and will not
be documented for this release. It is possible that these
infrastructure changes may introduce new bugs, so if you do not
require the following specific changes, it is recommended that
you continue your present development with the current mt5c06
"stable" release until such time that a fully regression-tested
version (mt5c08) is released.

Release mt5c07 contains the following changes

The size of the literal pool for string and floating-point
constants has been doubled from 64K bytes to 128K bytes.
A bug in the fillArray and ffillArray functions which would
crash on Arrays bigger than 2G-1 bytes has been fixed.

Release mt5c07 still contains the following previously
unreported bugs in the allocArray function

A crash may occur if an Array is allocated with fewer than
2G bytes from the malloc pool, and is then reallocated with
the same number of bytes from the Host memory pool; or
vice versa.
A crash may occur if an Array is first allocated from the Host
memory pool, and then the same array is reallocated from
the malloc pool. (This can happen inadvertantly if you first
allocate an Array with fewer than 2G bytes, and then
reallocate the same array with 2G or more bytes.)
In X32 mode, allocArray cannot allocate an Array larger than
2G-1 bytes.

Contents of this Zip file

README_mt5c07.txt This README file

AfhFM04dx32mt5c07.8bf The FM32 mt5c07 plug-in file

AfhFM04dx64mt5c07.8bf The FM64 mt5c07 plug-in file

DISCLAIMER

This is an "As-Is" release. Please use these files at your own risk.

Filter Templates
Here are some templates. Please feel free to edit and enhance
them. But please try to retain their style. Also feel free to add
your own templates.

Rules:

1. Try to comment as much code as possible with easy to
understand explanations.

2. Add a larger comment at the top that explains the purpose of
the template.

3. Make sure that all code and comments are visible in the
FilterMeister Editor, so that the user doesn't need to vertically
scroll to read it.

4. Add as many empty lines or empty space as possible to make
the templates easy to read.

5. Don't add any "complex" code to the templates. Try the easiest
approach that is possible. For example, your templates include
some code that isn't really necessary, e.g. the total_cost stuff and
the Zend variable.

Simple Template 1

Simple Template 2

Simple Template 3

FF in FET Template

Simple Template 1

%ffp

// This is a simple template for a
// FilterMeister filter. To get started
// simply replace the current values with
// your own ones. You can also try to
// replace parts of the current code or
// even add your own code.

//--
// Filter Infos

// The name of the sub menu on which your
// filter will appear in the graphics
// application
Category: "Harry's Filters"

// The name of the filter and the
// sub menu item
Title: "Colorize"

// Your plug-in will be saved under
// this name
Filename: "Colorize.8bf"

// Other values
Copyright: "Freeware"
Author: "Harald Heim"
Organization: "The Plugin Site"
URL: "http://thepluginsite.com"
Description: "Colorize the Image\n"

Version: "1.0"

// Determines what will be displayed on
// the About dialog of your plug-in:
// Title (!T), Version (!V), Description
// (!D), Copyright (!c) and URL (!U) each
// in a separate line
About: "!T !V\n!D\n!c\n!U"

//--
// Filter Control Definitions

ctl(0): "Red", // The slider label
 Range=(-128,128), // Value range of the slider
 Pos=(220,20), // Position of the slider on the dialog
 Size=(*,7), // Size of the slider
 Val=0 // Initial value of the slider

ctl(1): "Green", Range=(-128,128),
 Pos=(220,30), size=(*,7), Val=0
ctl(2): "Blue", Range=(-128,128),
 Pos=(220,40), size=(*,7), Val=0

// Hide the Edit button and the logo
ctl[CTL_EDIT]: none
ctl[CTL_LOGO]: None

//--
// Here comes the filter code

// In this case the value of the sliders
// are added to the r, g and b color
// values and saved in the R, G and B
// channels

R = r + ctl(0)
G = g + ctl(1)
B = b + ctl(2)

Simple Template 2

%ffp

// This is a simple template for a
// FilterMeister filter. To get started
// simply replace the current values with
// your own ones. You can also try to
// replace parts of the current code
// or even add your own code.

//--
// Filter Infos

// The name of the sub menu on which your
// filter will appear in the graphics
// application
Category: "Harry's Filters"

// The name of the filter and the sub
// menu item
Title: "Colorize"

// Your plug-in will be saved under
// this name
Filename: "Colorize.8bf"

// Other values
Copyright: "Freeware"
Author: "Harald Heim"
Organization: "The Plugin Site"
URL: "http://thepluginsite.com"
Description: "Colorize the Image\n"

Version: "1.0"

// Determines what will be displayed on
// the About dialog of your plug-in:
// Title (!T), Version (!V), Description
// (!D), Copyright (!c) and URL (!U) each
// in a separate line
About: "!T !V\n!D\n!c\n!U"

//--
// Filter Control Definitions

ctl(0): "Red", //The slider label
 Range=(-128,128), //Value range of the
slider
 pos=(220,20), //Position of the slider on the
dialog
 size=(*,7), //Size of the slider
 Val=0 //Initial value of the slider

ctl(1): "Green", Range=(-128,128),
 Pos=(220,30), Size=(*,7),Val=0
ctl(2): "Blue", Range=(-128,128),
 Pos=(220,40), Size=(*,7),Val=0

// Hide the Edit button and the logo
ctl[CTL_EDIT]: none
ctl[CTL_LOGO]: None

//--
// Here comes the filter code

ForEveryPixel:
{

 // In this case the value of the
 // sliders are added to the r, g and b
 // color values and saved in the
 // R, G and B channels

 R = r + ctl(0);
 G = g + ctl(1);
 B = b + ctl(2);

}

Simple Template 3

%ffp

// This is a simple template for a
// FilterMeister filter. To get started
// simply replace the current values with
// your own ones. You can also try to
// replace parts of the current code or
// even add your own code.

//--
// Filter Infos

// The name of the sub menu on which your
// filter will appear in the graphics
// application

Category: "Harry's Filters"

// The name of the filter and the sub
// menu item
Title: "Colorize"

// Your plug-in will be saved under this
// name
Filename: "Colorize.8bf"

// Other values
Copyright: "Freeware"
Author: "Harald Heim"
Organization: "The Plugin Site"
URL: "http://thepluginsite.com"

Description: "Colorize the Image\n"
Version: "1.0"

// Determines what will be displayed on
// the About dialog of your plug-in:
// Title (!T), Version (!V), Description
// (!D), Copyright (!c) and URL (!U)
// each in a separate line
About: "!T !V\n!D\n!c\n!U"

//--
// Filter Control Definitions

ctl(0): "Red", //The slider label
 Range=(-128,128), //Value range of the slider
 Pos=(220,20), //Position of the slider on the
dialog
 Size=(*,7), //Size of the slider
 Val=0 //Initial value of the slider

ctl(1): "Green", Range=(-128,128),
 Pos=(220,30), Size=(*,7), Val=0
ctl(2): "Blue", Range=(-128,128),
 Pos=(220,40), Size=(*,7), Val=0

// Hide the Edit button and the logo
ctl[CTL_EDIT]: None
ctl[CTL_LOGO]: None

//--
// Here comes the filter code

ForEveryTile:
{

 int c;

 // loop through all rows
 for (y = y_start; y < y_end; ++y) {

 // Update progress bar and cancel
 // if ESC key was pressed
 if (updateProgress(y,Y)) break;

 // loop through all columns
 for (x=x_start; x<x_end; ++x) {

 // loop through all channels
 for (z=0; z<Z; ++z){

 // Read a color value
 c = pget (x,y,z);

 // Process the color value.
 // In this case the value of
 // the appropriate slider is
 // added to the color value
 c = c + ctl(z);

 // Write color value
 pset (x, y, z, c);

 } // for z

 } // for x

 } // for y

 // Stop processing and apply the effect

 return true;
}

%ffp

// This template gets you started
// when you plan to enhance one
// of your Filter Factory
// plug-ins with FilterMeister.
// For this purpose it is
// important to be put the FF
// source code into
// FilterMeister's ForEveryTile
// handler as it gives you a lot
// of new possibilities.

//-------------------------------
// Filter Infos

Category : "FilterMeister"
Title : "FF in FET"
Copyright : "None"
Author : "Harald Heim"
Organization: "The Plugin Site"
URL:"http://thepluginsite.com"
Filename : "FFinFET.8bf"
Description: "Use your FF code in the ForEveryTile
handler"
Version : "1.01"
About : "!T !V\n!D\n"
 "!c\n!U"

// Only apply filter to RGB and Grayscale images
SupportedModes: RGBMode,GrayScaleMode

//-------------------------------
// Filter Control Definitions

// Determines how the filter dialog will look like
Dialog: color=#C0C0C0, NoTitlebar, Drag=Background, size=
(348,145) //,Pos=Client(CENTER)

ctl(13): groupbox, Color=#C0C0C0, Fontcolor=#000000, Pos=
(180,0), Size=(165,95)

// Insert you own slider label names and comment out the
slider that
// you don't need
ctl(0): "Slider 1", Val=28, Size=(*,6), Pos=(225,12),
fontcolor=black
ctl(1): "Slider 2", Val=201, Size=(*,6), Pos=(225,22),
Fontcolor=black
ctl(2): "Slider 3", Val=0, Size=(*,6), Pos=(225,32),
Fontcolor=black
ctl(3): "Slider 4", Val=76, Size=(*,6), Pos=(225,42),
Fontcolor=black
ctl(4): "Slider 5", Val=82, Size=(*,6), Pos=(225,52),
Fontcolor=black
ctl(5): "Slider 6", Val=149, Size=(*,6), Pos=(225,62),
Fontcolor=black
ctl(6): "Slider 7", Val=8, Size=(*,6), Range=(0,255), Pos=
(225,72), Fontcolor=black
ctl(7): "Slider 8", Val=0, Size=(*,6), Range=(0,255), Pos=
(225,82), Fontcolor=black

// Hide the Edit button and the logo
ctl[CTL_EDIT]: none
ctl[CTL_LOGO]: None

//-------------------------------

// Here comes the filter code

ForEveryTile:{

 int x,y,r,g,b,i,u,v,m,d,M,D;

 // Calculation of unsupported FF expressions
 // Comment out the not needed variables!
 M = c2m(X,Y)/2;
 D = c2d(X,Y)/2;

 // loop through all rows
 for (y=y_start; y<y_end; ++y) {

 // Update progress bar and
 // cancel if ESC key was
 // pressed
 if (updateProgress(y, Y)) break;

 // loop through all columns
 for (x=x_start; x<x_end; ++x) {

 // Calculation of unsupported FF expressions
 // Comment out the not needed variables!
 r = src(x,y,0);
 g = src(x,y,1);
 b = src(x,y,2);
 i = ((76 * r) + (150 * g) + (29 * b))/256;
 u = ((-19 * r) + (-37 * g) + (56 * b))/256;
 v = ((78 * r) + (-65 * g) + (-13 * b))/256;
 m = c2m(x-X/2,y-Y/2);
 d = c2d(x-X/2,y-Y/2);

 // Replace "255-r/g/b" with your own FF formulas
here

 /* If the FF code should include puts and gets,
 please replace the gets with the statement inside
the
 put command and remove the put command itself */

 pset(x,y,0, 255-r); //red channel
 pset(x,y,1, 255-g); //green channel
 pset(x,y,2, 255-b); //blue channel
 }
 }

 // Apply calculations to image
 return true;

}//ForEveryTile

Demonstration Source Codes

Using the Color Dialog

RGB to Grayscale Conversion

Writing "DEMO" on an image

Using The Color Dialog

%ffp

OnFilterStart:{

 int color = 0;

 // Displays the color dialog with white as
 // the default color
 color = chooseColor(RGB (255,255,255),
 "Please choose a color:");

 // Display the RGB values of the chosen color
 Info ("The following color was chosen: "
 "RGB (%d, %d, %d)",
 Rval(color), Gval(color), Bval(color));

 return false;
}

RGB To Grayscale Conversion

OnFilterStart:
{
 if (imageMode != GrayScaleMode && imageMode != RGBMode)
 {
 ErrorOk("This filter works only with 8-bit images in
RGB or Grayscale mode.");
 doAction(CA_CANCEL);
 }
 return false;
}

ForEveryTile:
{

 if (imageMode == RGBMode)
 // Put Grayscale version into channel 0
 // Grayscale conversion similar to Photoshops RGB Mode
to Grayscale Mode conversion
 // app. 30% Red, 59% Green, 11% Blue
 {
 for (y=y_start; y<y_end; y++)
 for (x=x_start; x<x_end; x++)
 pset(x, y, 0, (src(x, y, 0) * 76 + src(x, y, 1)
* 150 + src(x, y, 2) * 29) / 255);
}

// FILTER CODE that does its weird line art or grayscale
thing on channel 0...

if (imageMode == RGBMode)
// Copy result to channels 1 and 2

// because a Grayscale image in RGB mode has three
identical channels
{
 for (y=y_start; y<y_end; y++)
 for (x=x_start; x<x_end; x++)
 {
 pset(x, y, 1, pget(x, y, 0));
 pset(x, y, 2, pget(x, y, 0));
 }
 }

 return true;
}

Writing DEMO on an image
This code example shows how to render a small watermark with
the word "DEMO" randomly across on an image when the user
clicks the OK button. You can use this code for public demo
versions of your Photoshop plug-ins, so the customer can try out
your plug-in before buying it.

Example

%ffp

ForEveryTile:
{
 int i, j, offset, demo, xstart, step;

 if (ctl(CTL_OK)) {
 if (Y > X) step=(X)/8; else step=(Y)/8;

 // Avoid too many "DEMO" on small images
 if (step < 200) step=200;

 // Set maximum "DEMO" distance
 if (step > 400) step=400;

 for (z=0; z < Z; z++) {
 xstart = 0;
 for (y=step/2; y < Y; y+=step) {
 if (xstart > 0){
 xstart=0;
 } else {
 xstart=step/2;
 }
 for (x=xstart; x < X; x+=step) {

 // Set background for text
 for (j=-5; j < =10; j++)
 for (i=-5; i < =30; i++)
 // blend with image
 pset(x+i, y+j, z,
 blend(pget(x+i, y+j, z),
 255, z, 0, 70));

 //Set "DEMO" Text
 //D
 offset=0;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+1,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+3,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+1,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+3,z,0);

 //E
 offset=7;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+1,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+3,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+0,z,0);

 pset(x+offset,y+2,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+4,z,0);

 //M
 offset=14;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+1,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+3,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+1,z,0);
 offset=16;
 pset(x+offset,y+2,z,0);
 offset+=1;
 pset(x+offset,y+1,z,0);
 offset+=1;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+1,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+3,z,0);
 pset(x+offset,y+4,z,0);

 //0
 offset=21;
 pset(x+offset,y+1,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+3,z,0);

 offset+=1;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+0,z,0);
 pset(x+offset,y+4,z,0);
 offset+=1;
 pset(x+offset,y+1,z,0);
 pset(x+offset,y+2,z,0);
 pset(x+offset,y+3,z,0);
 }//x
 }//y
 }//z

 }//if OK Button

 return true;
}

VK codes
This is a list of all available VK codes in FilterMeister

VK_LBUTTON
VK_RBUTTON
VK_RBUTTON
VK_CANCEL
VK_MBUTTON
VK_BACK
VK_TAB
VK_CLEAR
VK_RETURN
VK_SHIFT
VK_CONTROL
VK_MENU
VK_PAUSE
VK_CAPITAL
VK_ESCAPE
VK_SPACE
VK_PRIOR
VK_NEXT
VK_END
VK_HOME
VK_LEFT
VK_UP
VK_RIGHT
VK_DOWN
VK_SELECT
VK_PRINT
VK_EXECUTE
VK_SNAPSHOT
VK_INSERT
VK_DELETE

VK_HELP
VK_0
VK_1
VK_2
VK_3
VK_4
VK_5
VK_6
VK_7
VK_8
VK_9
VK_A
VK_B
VK_C
VK_D
VK_E
VK_F
VK_G
VK_H
VK_I
VK_J
VK_K
VK_L
VK_M
VK_N
VK_O
VK_P
VK_Q
VK_R
VK_S
VK_T
VK_U
VK_V
VK_W
VK_X
VK_Y

VK_Z
VK_LWIN
VK_RWIN
VK_APPS
VK_NUMPAD0
VK_NUMPAD1
VK_NUMPAD2
VK_NUMPAD3
VK_NUMPAD4
VK_NUMPAD5
VK_NUMPAD6
VK_NUMPAD7
VK_NUMPAD8
VK_NUMPAD9
VK_MULTIPLY
VK_ADD
VK_SEPARATOR
VK_SUBTRACT
VK_DECIMAL
VK_DIVIDE
VK_F1
VK_F2
VK_F3
VK_F4
VK_F5
VK_F6
VK_F7
VK_F8
VK_F9
VK_F10
VK_F11
VK_F12
VK_F13
VK_F14
VK_F15
VK_F16

VK_F17
VK_F18
VK_F19
VK_F20
VK_F21
VK_F22
VK_F23
VK_F24
VK_NUMLOCK
VK_SCROLL
VK_LSHIFT
VK_RSHIFT
VK_LCONTROL
VK_RCONTROL
VK_LMENU
VK_RMENU
VK_PROCESSKEY
VK_ATTN
VK_CRSEL
VK_EXSEL
VK_EREOF
VK_PLAY
VK_ZOOM
VK_NONAME
VK_PA1
VK_OEM_CLEAR

See Also

getAsyncKeyState, getAsyncKeyStateF, FME_KEYDOWN,
FME_KEYUP

Windows UI Color Constants
COLOR_3DDKSHADOW

COLOR_3DFACE

COLOR_3DHIGHLIGHT

COLOR_3DHILIGHT

COLOR_3DLIGHT

COLOR_3DSHADOW

COLOR_ACTIVEBORDER

COLOR_ACTIVECAPTION

COLOR_APPWORKSPACE

COLOR_BACKGROUND

COLOR_BTNFACE - Standard window/dialog background color.

COLOR_BTNHIGHLIGHT

COLOR_BTNHILIGHT

COLOR_BTNSHADOW

COLOR_BTNTEXT

COLOR_CAPTIONTEXT

COLOR_DESKTOP

COLOR_GRAYTEXT

COLOR_HIGHLIGHT

COLOR_HIGHLIGHTTEXT

COLOR_INACTIVEBORDER

COLOR_INACTIVECAPTION

COLOR_INACTIVECAPTIONTEXT

COLOR_INFOBK

COLOR_INFOTEXT

COLOR_MENU

COLOR_MENUTEXT

COLOR_SCROLLBAR

COLOR_WINDOW

COLOR_WINDOWFRAME

COLOR_WINDOWTEXT

Filter Specification Keys
(case insensitive)

About

Author

Category

Copyright

Description

Dialog

Embed

EnableInfo

Filename

FilterCaseInfo

Organization

SupportedModes

Title

URL

Version

formatString descriptors

(These are built-in 256-character string arrays.)

filterAuthorText

filterCase

filterCaseText

filterCategoryText

filterCopyrightText

filterDescriptionText

filterFilenameText

filterHostText

filterImageModeText

filterInstallDir

filterOrganizationText

filterTitleText

filterURLText

filterVersionText

Named modes for SupportedModes
Specification
(case insensitive, may be abbreviated)

AllModes

BitmapMode

GrayScaleMode

IndexedColorMode

RGBMode

CMYKMode

HSLMode

HSBMode

MultichannelMode

DuotoneMode

LabMode

Gray16Mode

RGB48Mode

Lab48Mode

CMYK64Mode

DeepMultichannelMode

Duotone16Mode

Named modes for EnableInfo Specification
(case sensitive, may NOT be abbreviated)

BitmapMode

GrayScaleMode

IndexedColorMode

RGBMode

CMYKMode

HSLMode

HSBMode

MultichannelMode

DuotoneMode

LabMode

Gray16Mode

RGB48Mode

Lab48Mode

CMYK64Mode

DeepMultichannelMode

Duotone16Mode

Named variables for EnableInfo specification
(case sensitive)

PSHOP_ImageMode

PSHOP_ImageDepth

PSHOP_HasLayerMask

PSHOP_HasSelectionMask

PSHOP_HasTransparencyMask

PSHOP_NumTargetChannels

PSHOP_NumTrueChannels

PSHOP_IsTargetComposite

PSHOP_ImageWidth

PSHOP_ImageHeight

Functions specific to EnableInfo specification
(case sensitive)

dim

in

max

min

Named mode Constants for use in source code
(case sensitive; this is an upper-case version, CamelCase above
is also supported)

BITMAPMODE

GRAYSCALEMODE

INDEXEDCOLORMODE

RGBMODE

CMYKMODE

HSLMODE

HSMODE

MULTICHANNELMODE

DUOTONEMODE

LABMODE

GRAY16MODE

RGB48MODE

LAB48MODE

CMYK64MODE

DEEPMULTICHANNELMODE

DUOTONE16MODE

Filter Case Handling Specifications
(case insensitive)

FlatImageNoSelection

FlatImageWithSelection

FloatingSelection

EditableTransparencyNoSelection

EditableTransparencyWithSelection

ProtectedTransparencyNoSelection

ProtectedTransparencyWithSelection

inCantFilter

inStraightData

inBlackMat

inGrayMat

inWhiteMat

inDefringe

inBlackZap

inGrayZap

inWhiteZap

inBackgroundZap

inForegroundZap

outCantFilter

outStraightData

outBlackMat

outGrayMat

outWhiteMat

outFillMask

copySourceToDestination

doNotCopySourceToDestination

doesNotWorkWithBlankData

worksWithBlankData

doesNotFilterLayerMasks

filtersLayerMasks

doesNotWriteOutsideSelection

writesOutsideSelection

Plug-in Compatible Hosts
These list compatibility of the Plug-ins generated from
FilterMeister with graphics hosts.

Fully compatible

Vendor Application Version
ACD Systems Canvas X
ACD Systems Photo Canvas 2
ACD Systems Photo Editor 3
Adobe After Effects 4.1, 5, 5.5
Adobe Illustrator 7
Adobe ImageReady 2
Adobe PhotoDeLuxe 2, 3

Adobe PhotoShop 3, 4, 5, 5.5, 6, 7, CS, CS2,
CS3

Adobe PhotoShop
Elements 1, 2, 3, 4, 5, 6

Alexander Sabov PicMaster 1.25

Antonio Da Cruz PhotoFiltre
Studio 7.0.x

Arcadia PhotoPerfect 2.90
Aurora Borealis Mandala Painter 3
CADLink SignLab 5 and higher

CDH Productions Image Explorer
Pro 4

CiEBV
Computerinsel PhotoLine 32 5, 6, 7, 8, 9, 10, 11

Corel Bryce 4
Corel Draw 9
Corel Painter IX
Corel PhotoPaint 9, 10, 11, 12
Corel Paint Shop Pro X, XI, X2
Deneba Canvas 6, 7, 8, 9
Equilibrium DeBabelizer Pro 5
Irfan Skiljan IrfanView 3.85, 4
JASC Paint Shop Pro 4.12, 5, 6, 7, 8, 9
KnowledgeAdventure HyperStudio 4.2
Macromedia Freehand 7, 8
Macromedia Fireworks 8
Mediachance PhotoBrush 1

MeeSoft Image Analyzer 1 (with the 8bf Interface
plug-in)

Megalux Ultimate FX
Megalux Ultimate Paint 2
MetaCreations/Corel Painter 6
Microfrontier Digital Darkroom 1.2
MicroSoft PhotoDraw 2000 1

New World Focus
PhotoEditor 4

Newave Chaos Fx:
Twilight'76 1.2

Pierre-emmanuel
Gougelet XnView 1.70

PluginMaster PluginMaster 1
PS ImageN 1.0z
Right Hemisphere Deep Paint

Ron Scott QFX (LE) 7.0
Satori PhotoXL 2.29
Serif PhotoPlus 6, 7, 8, 9, 10
SigmaPi NiGulp 1.5
SigmaPi Pixopedia 24 1.0.5
Stoik ImageMan Pro 5

The Plugin Site Plugin
Commander Pro 1.5, 1.6

ThinkTank Ameri-Imager 2
ULead GIF Animator 4
ULead PhotoImpact 4, 4.2, 5, 8, 10, 11
WebSuperGoo Achroma
Xara Xara X
Zoner Photo Studio 10

Partially compatible

Vendor Application Version Limitations

ArcSoft PhotoStudio
2000 5.5 Preview incorrect

Corel PhotoPaint 6, 7, 8 Preview and result are
inverted and rotated

Discreet Combustion 2 Blue cast in preview
GIMP GIMP 1.2.4 Preview incorrect

Macromedia Fireworks 2, 3, MX Transparency not correct in
preview

Magix
Xtreme
Photo
Designer

6
Applying to a selection or
object does not work;
Random crashes

Micrografx Picture 8, 9 Preview zoom doesn't work

Publisher

MicroSoft Image
Composer 1.5 Cannot drag preview

MicroSoft
Picture It!
Digital Image
Pro

7
100% zoom may not work,
Cancel sometimes produces
crash

VicMan VCW VicMan
Photo Editor 6.9 Preview drag causes crash

Untested

Vendor Application Version
Ability PhotoPaint Studio any
Adobe Illustrator 8
Adobe Image Ready 1
Adobe LiveMotion any
Adobe Pagemaker 6 and higher
BananaSoft TwistedPixel any
Corel PhotoHouse 2 and higher
Corel Xara 2
DigisoftDirect ImagePro 2K1
Equilibrium DeBabelizer Pro 4.5
Fractal Design Detailer any
Macromedia Director 5, 6 and higher
MetaCreations Painter 5.5, 7
MetaCreations/Corel Art Dabbler 2.1
MGI PhotoSuite 4 and higher
Micrografx Picture Publisher 4ak, 5, 6a, 7
Microsoft PhotoDraw 2000 2
Newtek Aura any

Newtek Inspire 3D any
Newtek Lightwave 5.6 and higher
PM Imagic any
Presto! ImageFolio all
Serif PhotoPlus 5
Ulead PhotoImpact 2, 3.01 and higher

Incompatible

Vendor Application Version Limitations
Adobe After Effects 6.5

Adobe ImageStyler Doesn't support
PhotoShop plug-ins

Adobe PhotoDeLuxe 1

Adobe Premiere 4.2, 5,
5.1, 5.5

Renders only black to
image

ArcSoft PhotoStudio
2000 4.1 Doesn't support

PhotoShop plug-ins

AutoDesk Combustion 2008 Crashes and quits on
trying to invoke plug-in

Datatech ImageMan
Crashes when dragging
preview and when
applying final render

Discreet 3D Studio
Max 4.2

Background not displayed,
color dialog doesn't work,
renders distorted
red/green pattern

Macromedia xRes 2 Crashes on loading plug-
in

MetaCreations Painter 5 Does not apply final
render

MicroSoft Image
Composer

1.0 Doesn't recognize plug-
ins

SPG ColorWorks:
Web 4 Does not apply final

render

FilterMeister Compatible Hosts
These list compatibility of the FilterMeister plug-in itself with
graphics hosts.

Fully compatible

Vendor Application Version
Adobe PhotoShop 3, 4, 5, 5.5, 6, 7, CS, CS2
JASC Paint Shop Pro 7, 8, 9

Untested

Vendor Application Version
Ability PhotoPaint Studio any
ACD Systems Canvas 9, X
Adobe After Effects 4.1, 6.5
Adobe Illustrator 7, 8
Adobe Image Ready 1, 2
Adobe ImageStyler
Adobe LiveMotion any
Adobe Pagemaker 6 and higher
Adobe PhotoDeLuxe 1, 2, 3
Adobe PhotoShop Elements 1, 2, 3
Adobe Premiere 4.2, 5, 5.1, 5.5
Alexander Sabov PicMaster 1.25
Antonio Da Cruz PhotoFiltre Studio 7.0.x
ArcSoft PhotoStudio 2000 4.1, 5.5
BananaSoft TwistedPixel any

CADLink SignLab 5 and higher
CDH Productions Image Explorer Pro 4
CiEBV Computerinsel PhotoLine 32 5, 6
Corel Bryce 4
Corel Draw 9
Corel Painter IX
Corel PhotoHouse 2 and higher
Corel PhotoPaint 6, 7, 8, 9, 12
Corel Xara 2
Datatech ImageMan
Deneba Canvas 6
DigisoftDirect ImagePro 2K1
Discreet 3D Studio Max 4.2
Discreet Combustion 2
Equilibrium DeBabelizer Pro 4.5
Equilibrium DeBabelizer Pro 5
Fractal Design Detailer any
GIMP GIMP 1.2.4
Harald Heim Plugin Commander 1.5
Irfan Skiljan IrfanView 3.85
JASC/Corel Paint Shop Pro 4.12, 5, 6
KnowledgeAdventure HyperStudio 4.2
Macromedia Director 5, 6 and higher
Macromedia Fireworks 2, 3, 8
Macromedia Freehand 7, 8
Macromedia xRes 2
Mediachance PhotoBrush
MegaLux Ultimate FX
MegaLux Ultimate Paint 2.1

MetaCreations/Corel Art Dabbler 2.1
MetaCreations/Corel Painter 5, 5.5, 6, 7
MGI PhotoSuite 4 and higher
Microfrontier Digital Darkroom 1.2
Micrografx Picture Publisher 4ak, 5, 6a, 7, 8, 9
MicroSoft Image Composer 1.0, 1.5
MicroSoft PhotoDraw 2000 1, 2

MicroSoft Picture It! Digital
Image Pro 7

New World Focus PhotoEditor 4
Newave Chaos Fx: Twilight'76 1.2
Newtek Aura any
Newtek Inspire 3D any
Newtek Lightwave 5.6 and higher
Pierre-emmanuel
Gougelet XnView 1.70

PM Imagic any
Presto! ImageFolio all
PS ImageN 1.0z
Right Hemisphere Deep Paint
Ron Scott QFX (LE) 7.0
Satori PhotoXL 2.29
Serif PhotoPlus 5, 6, 7, 9
SigmaPi NiGulp 1.5
SigmaPi Pixopedia 24 1.0.5
SPG ColorWorks: Web 4
Stoik ImageMan Pro 5
ThinkTank Ameri-Imager 2
ULead GIF Animator 4

ULead PhotoImpact 2, 3.01, 4, 4.2, 5, 8,
10, 11

VicMan VCW VicMan Photo
Editor 6.9

WebSuperGoo Achroma
Xara X

Incompatible

Autodesk Combustion 2008 Crashes and quits on trying to
invoke plug-in

FilterMeister Programming Style Guide

Spelling

Correct spelling is as much to be admired in source code
comments and software documentation as in any highly literary
work. A spell-checker can be very helpful when checking text
documents, but is often less useful for vetting comments buried
within cryptic source code lines (without proper tools, of course).
So please take extra time and care to review your source code for
correct spelling and grammar. You might even turn up a few
program bugs along the way -- it has happened to me!

The following spelling rules and suggestions are based on
American, not British, usage. Since many of our European
members are more familiar with British English, we won't harp on
"color" versus "colour" here and there. It's more important simply
to keep the usage consistent within a single document. I've used
the [Merriam-Webster] (an abridged work) as my primary source
of reference to resolve spelling issues for the principal reason
that it tends to agree with me more often than does, say, the
American Heritage Dictionary.

Most of the examples below were gathered from actual
occurrences in FilterMeister documentation, postings, and code
listings. If you have your own personal "pet peeves", please add
them here! -Alex

a lot, not alot. But distinguish from the verb allot.
abbreviate, not abreviate.
acknowledgment or acknowledgement, but
acknowledgment is preferred in American English. Ditto
judgment versus judgement.

http://www.m-w.com/dictionary

all right, not alright. But already and all ready are okay
when correctly used.
backward or backwards. A slight preference for backward
as an adverb, but always backward as an adjective. Ditto for
forward, downward, upward, westward, and toward.
beveler, beveled and beveling. Also British beveller,
bevelled and bevelling.
Boolean, not boolean. Named after George Boole, "Boolean"
should be capitalized per [Merriam-Webster]. However, the
FM type keyword bool is lowercase. Go figure.
category, not catagory.
compatible and compatibility, not compatable or
compatability.
definite, not definate.
different from, different than, different to. This is a matter
of usage, not spelling. According to [Alt-Usage-English],
"different to" is used chiefly in British speech, while
"different than" is chiefly American usage. The most widely
accepted usage is "different from", which we hereby
recommend.
disastrous, not disasterous.
discriminate, not descriminate.
duplicate, not dublicate.
e.g. and i.e., not eg or ie. These are abbreviations of exempli
gratia and id est, resp., and require periods.
Filter Factory, not FilterFactory. Two words, per Adobe.
FilterMeister, not Filtermeister or Filter Meister, and
certainly not FilterMiester! "FilterMeister™" is (or will
become) a trademark, and should be spelled exactly this way
(one word, camel-case). The single word form
"FilterMeister" also works better in search engines (fewer
spurious hits) than the two word phrase "Filter Meister".
formatted, not formated.
gauge, not guage. gage is also allowed, but not preferred.

https://www.merriam-webster.com/dictionary/Boolean
http://alt-usage-english.org/excerpts/fxdiffer.html

gray or grey. American English slightly prefers gray and
Microsoft uses this spelling in its technical documentation
and API names, so let's prefer gray in this context.
height, not heighth or heigth.
its versus it's, your versus you're, etc. These and many
other possessive/contraction homonym pairs are easily
mistyped without careful proofreading.
kudos, not kudo. Per [Merriam-Webster], kudos is a
singular word in Greek.
label, not lable. Also labeler, labeled and labeling (or British
labelled and labelling).
license or licence. American English prefers the former.
millennium, not millenium.
misspell, not mispell. Something oddly recursive about this
one.
NULL versus NUL. "NULL" is a zero-valued pointer to
nothing. "NUL" is a zero-valued character constant ('\0').
occasion, not ocassion.
occurred, not occured. Per [Merriam-Webster]. Also:
occurring, occurrence, but occurs.
Paint Shop Pro, not PaintShop Pro or Paintshop pro. "Paint
Shop Pro®" is a registered trademark of Corel®.
Photoshop, not PhotoShop or Photo Shop. "Photoshop®" is
trademarked by Adobe.
plug-in, not plugin. Per [Merriam-Webster] for both
adjective and noun usages. But note: plug in when used as a
verb.
precede, not preceed. But succeed and supersede.
preferred, not prefered. Per [Merriam-Webster]. Also:
preferring, but preference and prefers.
principle and principal. [Merriam-Webster] says: Although
nearly every handbook and many dictionaries warn against
confusing principle and principal, many people still do.
Principle is only a noun; principal is both adjective and
noun.
privilege, not priviledge or privelege.

http://www.merriam-webster.com/dictionary/kudos
http://www.m-w.com/dictionary/occurred
http://www.m-w.com/dictionary/plugin
http://www.m-w.com/dictionary/preferred
http://www.merriam-webster.com/dictionary/principle

propagate, not propogate (my personal nemesis -Alex).
Ditto propaganda, not propoganda. But note propose and
proponent.
publicly or publically. [Merriam-Webster] permits either,
but prefers publicly.
recommend, not reccommend.
resource, not ressource.
separate, not seperate.
their, there, they're. Another set of homonyms which are
easily confused when typing rapidly.
threshold, not threshhold or treshold. Who would have
guessed?
tileable, not tilable. Not in most dictionaries, but Google
lists 18,500 hits on "tilable" versus 107,000+ hits on "tileable".
Also, if you search Google for "tilable" it asks "Did you mean:
tileable". 'Nuff said.
usage, not useage. Per [Merriam-Webster]. However, either
usable or useable is acceptable per [Merriam-Webster].
Enough to tear one's hair out.
weird, not wierd. An egregious exception to the rule: [i]
before [e] except after ?.

Information

Describe how the information stuff should be formatted.

Controls

Describe how the control definitions should be formatted.

Code

Expressions

http://www.m-w.com/dictionary/publicly
http://www.m-w.com/dictionary/usage
http://www.m-w.com/dictionary/useable

Keep one expression on one line; each line should contain
only one ; symbol. The only exception being the for
statement.

Parentheses

Use spaces on the inside of parentheses; this is practically
required to do decent Boolean expression formatting and
should thus be used everywhere for consistency. (I disagree.
-Alex.)

Brackets

Only use brackets when necessary, not for single lines of
code. Commonly it is advised to always use brackets but
most of the time this is ridiculous and only causes bloated
source files. (I disagree. -Alex., Strongly disagree. -Martijn.)
Place brackets on their own lines always, never combined
with anything else, this makes for easy recognition.

ForEveryTile():
{
 if(ctl(0))
 Info("Control 0 is set");
 else
 {
 Info("Control 0 is not set");
 return false;
 }
}

Boolean expressions

Split logical expressions over multiple lines whenever they
concern independent variables.

Let the code layout represent the logical structure of the
expression.
Never compare Booleans to true or false explicitly; this
makes code more intuitive to read.
Use parentheses whenever and only when mixing
comparable operators such as Boolean operators,
comparison operators or mathematical operators.

// Bad
if(((x>10) && (x<2+4*5)) || ((y==0) && do_first_row))
 // ...

// Good
if((x > 10 && x < 2 + (4 * 5))
 || (y == 0
 && do_first_row))
 // ...

Indenting

Use a tab size of 4 characters; any smaller will clash with
logical expressions, any more is useless.

Ternary operator

Use a ternary operator whenever an if..else would normally
be used which only assigns value to a single variable.
Split the ternary operator over two lines. (I disagree. -Alex.)
Use direct assignment of Boolean values whenever possible.

// Bad
if(a > 10)
 b = true;
else
 b = false;

// Better
b = a > 10? true
 : false;

// Best (because we assign Boolean values)
b = a > 10;

Variable names

There are several options available and decisions to be made:

Capitals
Underscores
Abbreviation
Structuring
Type

When combined, there are a few common standards in the
C/C++ world:

Hungarian/Microsoft notation. This is the one we
encounter in the Windows API. It uses Capitals for each
word and prepends the first letter of each structure level
before the word describing the variable.

width of the size of a circle: csWidth.
Uses no underscores, has no notion of type, practically
never abbreviates but is highly structured.
Quite unreadable and likely to be quite ambiguous,
structuring has practically no use in FM.

OpenGL-like notation. This is basically caps for all words
and only one underscore before the type identifier.

width of the size of a circle: CircleSizeWidth_f
(assuming floating point)
Long names, using type can be quite redundant and
long names :)

Forces you to know the type which is a good thing.
C++ style notation. Using no caps anywhere, underscores to
separate words.

width of the size of a circle: circle_size_width
Long names but at least it's easy and pleasant to read.
Has my vote - Martijn

Then there's the leading underscore thing. Some consider these
to be reserved for the compiler, others (including me) like them
to distinguish between normal variables and those passed in as
arguments. FM has no user-defined functions yet so this issue is
of no hurry.

Efficiency

Use prefix increment and decrement whenever possible
instead of postfix; postfix causes a temporary variable to be
created which is practically never needed. (Not necessarily
true, depends on how well the compiler optimizes. -Alex.)
Place the most discriminating (failing) Boolean expressions
first; any consecutive expressions will only be tested if it
evaluates to true.

// Bad
if (x > 0 && y == 1)
 // ...

// Good
if (y == 1 && x > 0)

Syntax of the FM Language
FilterMeister actually supports several plug-in filter design
languages, including

Adobe's original Filter Factory (FF) language,
Mario Klingemann's Filter Factory Wizard (FFW),
the extended Filter Factory Plus (FFP) language, and
the all-encompassing FilterMeister Language (FML)

As such, the syntax of the total union of all languages is rather
complex, but may be more readily understood by examining the
syntax of each component language individually.

Conventions

Case Sensitivity

Extended BNF Description

Terminal Symbols

Examples of terminal symbols (e.g., a keyword or a reserved
word):

Dialog
ForEveryTile
int , for

Non-terminal Symbols

Examples of non-terminal symbols:

<FM_program></FM_program>

<statement></statement>
<constant_expression></constant_expression>
<decimal_number></decimal_number>

Top Level Symbol

The top-level non-terminal symbol, from which all programs
recognized by FilterMeister are derived, is:

<FM_program> </FM_program>

Click the link for <FM_program> to begin delving into the depths
of the various FM Language syntaxes, or click one of the
following links for the syntax of a specific FM sublanguage :
</FM_program>

<AFS_program> </AFS_program>
<FFW_program> </FFW_program>
<FFP_program> </FFP_program>
<FML_program> </FML_program>

See Also

Command Reference

Alphabetic Index

_

__fgetArray
 __fputArray
 __getArray

 __putArray

A

abort
 abort_mode

 abs
 add
 allocArray

 allocArrayPad
 allocHost

 appendEllipsis
 Appendix

 Aval

B

bCircle
 bgColor
 BITMAP
 blend

 bRect
 bRect2

 bTriangle
 Bval

C

c2d
 c2m
 callLib

 calloc
 ceil

 cell_initialize
 cell_preserve
 chdir

 CHECKBOX
 checkCtlFocus

 checkDialogFocus
 chooseColor

 chop
 clearCtlBuddyStyle

 clearCtlProperties
 clearDialogEvent

 clearerr
 clock

 cmyk2rgb
 cnv

 cnvx
 cnvy
 COMBOBOX

 Command Reference
 Constants

 contrast
 Control drawing

 copyArray
 cosineinterpolate

 countProcessors
 createCircularRgn

 createCriticalSection
 createCtl

 createEllipticRgn
 createPolyRgn

 createPopupMenu

createRectRgn
 createRoundRectRgn

 C Runtime Functions
 ctl

 ctlEnabled
 ctlEnabledAs

D

deleteCriticalSection
 deleteCtl

 deleteCtlItem
 deleteCtlItems
 deleteFont

 deleteRegValue
 Demonstration Source Codes

 designTime
 destroyMenu

 Dialog Functions
 dif

 doAction
 doingProxy

 doingScripting

E

EDIT
 egm

 egw
 enableCtl

 enableToolTipBalloon
 endSetPixel

 enterCriticalSection
 enumRegValue

 Error
 ErrorOk

Events
 exp

 expand

F

fabs
 false
 fc2d
 fc2m
 fCallLib

 fclose
 fcloseall

 feof
 ferror

 FF in FET Template
 ffillArray

 fflush
 fgColor

 fgetArray
 fgetc

 fgetpos
 fgets

 fillArray
 Filter Specifications

 Filter Templates
 filterCase

 filterInstallDir
 FilterMeister compatible hosts

 filterUniqueID
 findClose

 findFirstFile
 findNextFile
 floor

 flushall
 fmax

FMC_TARGET
 FME_CANCEL
 FME_DRAWITEM

 FME_INIT
 FME_KEYDOWN

 FME_KEYUP
 FME_MOUSEMOVE

 FME_MOUSEOUT
 FME_MOUSEOVER

 fmin
 fmod
 fopen
 ForEveryPixel

 ForEveryRow
 ForEveryTile
 formatString
 fputArray

 fputc
 fputs
 fr2x

 fr2y
 FRAME

 fread
 free

 freeArray
 freeHost

 freeLib
 fseek

 fsetpos
 fsin

 fwrite

G

gamma
 get

getAppTheme
 getArray

 getArrayDim
 getArrayString

 getAsyncKeyState
 getAsyncKeyStateF

 getc
 getCtlClass

 getCtlColor
 getCtlCoord
 getCtlDivisor

 getCtlItemCount
 getCtlItemText

 getCtlPos
 getCtlRange

 getCtlTab
 getCtlText
 getCtlVal

 getcwd
 getDialogHeight

 getDialogPos
 getDialogWidth

 getDisplaySettings
 getImageTitle

 getLibFn
 getLocaleInfo

 getPreviewCursor
 getPreviewCoordX
 getPreviewCoordY
 getRegPath

 getRegRoot
 getRegString

 getSetPixelHeight
 getSetPixelWidth

 getSpecialFolder
 getSysColor

g y
 getSysMem
 getSystemDefaultLCID

 getThreadRetVal
 getUserDefaultLCID

 getWindowsVersion
 grad2D

 gray
 GROUPBOX

 Gval

H

Handlers
 haveMask
 HDBUsToPixels

 hostSerialNumber
 hostSig

 hsl2rgb
 hypot

I

iceil
 ichop

 ICON
 ifloor
 iget

 IMAGE
 Image Functions

 imageMode
 Info

 insertMenuItem
 ipow

 iround
 isFloating

isThreadActive
 iuv2rgb

K

Known bugs

L

lab2rgb
 Language

 LCID
 ldexp
 leaveCriticalSection

 linearinterpolate
 LISTBOX

 loadlib
 lockHost

 lockWindow
 log

 log10

M

malloc
 map

 max
 memchr

 memcmp
 memcpy

 memicmp
 memmove
 memset

 METAFILE
 min

 mix

mix1
 mix2
 mkdir

 modf
 MODIFY

 mouseOverWhenInvisible
 msgBox

 msize
 msk

N

New in FM 1.0
 NONE

O

OnCtl
 OnFilterEnd

 OnFilterStart
 OWNERDRAW

P

pget
 pgetp

 pgetr
 phaseshift

 PixelsToHDBUs
 PixelsToVDBUs
 planes

 planesWithoutAlpha
 platformData

 playSoundWave
 playSoundWaveLoop

 playSoundWaveSync

Plug-in compatible hosts
 pointer_to_buffer

 posterize
 pow

 powi
 printf
 pset

 psetp
 psetr
 PUSHBUTTON

 put
 putArray

 putArrayString
 putc

 putRegString

Q

quickFill
 quickMedian

R

r2x
 r2y
 RADIOBUTTON

 rand
 realloc

 RECT
 refreshCtl

 refreshRgn
 refreshWindow

 remove
 rename
 rewind
 RGB

rgb2cmyk
 rgb2hsl

 rgb2iuv
 rgb2lab
 rgb2ycbcr

 RGBA
 RGB to Grayscale Conversion

 rmdir
 rnd

 round
 rst

 Rval

S

samplingSupport
 saturation

 scaleFactor
 scl

 SCROLLBAR
 scrollPreview

 set_array_mode
 set_bitdepth_mode

 set_edge_mode
 set_psetp_mode
 setBitmap

 setBitmapStretch
 setBitmapStretchTransparent

 setBitmapTile
 setBitmapTransparent

 setClickDrag
 setCtlAction
 setCtlAnchor
 setCtlBuddyStyle

 setCtlColor
 setCtlDefVal

setCtlDivisor
 setCtlEditSize
 setCtlFocus

 setCtlFont
 setCtlFontColor

 setCtlGamma
 setCtlImage

 setCtlLineSize
 setCtlOrder

 setCtlPageSize
 setCtlPixelPos
 setCtlPos

 setCtlProperties
 setCtlRange

 setCtlScripting
 setCtlTab

 setCtlText
 setCtlTextv

 setCtlTheme
 setCtlThumbSize

 setCtlTicFreq
 setCtlToolTip
 setCtlVal

 setDialogColor
 setDialogDragMode

 setDialogEvent
 setDialogGradient

 setDialogImage
 setDialogImageMode

 setDialogMinMax
 setDialogPos

 setDialogRegion
 setDialogShowState

 setDialogSizeGrip
 setDialogStyle

 setDialogText

g
 setDialogTextv

 setFill
 setFont

 setGamma
 setLine

 setPixel
 setPreviewCursor

 setRectFill
 setRectGradient

 setRegPath
 setRegRoot
 setText

 setTextv
 setTimerEvent

 setZoom
 shellExec
 Simple Template 1

 Simple Template 2
 Simple Template 3
 sinbell

 sizeof
 sleep

 SLIDER
 snprintf
 solarize
 sprintf

 sqr
 sqrt
 srand

 src
 srcp

 STANDARD
 startSetPixel

 STATICTEXT
 strcat

 strchr

 strcmp
 strcpy

 strcspn
 strdate
 strdup
 strerror

 stricmp
 stripEllipsis

 strlen
 strlwr
 strncat
 strncmp

 strncpy
 strnicmp

 strnset
 strpbrk
 strrchr
 strrev

 strset
 strspn
 strstr

 strtime
 strtod

 strtok
 strtol

 strtoul
 Structure

 strupr
 strxfrm

 Style Guide
 sub

 switch
 Syntax
 System Functions

T

t2get
 t2getp

 t2ger
 t2set
 t2setp

 t2setr
 t3get

 t3getp
 t3getr
 t3set

 t3setp
 t3setr
 t4get

 t4getp
 t4getr
 t4set

 t4setp
 t4setr
 TAB

 terminateThread
 testAbort

 tget
 tgetp

 tgetr
 time
 tone
 TRACKBAR

 trackPopupMenu
 tri

 tricos
 triggerEvent

 triggerThread
 true

tryEnterCriticalSection
 tset

 tsetp
 tsetr

U

updateAnchors
 updatePreview
 updateProgress
 Using the Color Dialog

V

Variables
 VDBUsToPixels

 VK codes

W

waitForThread
 Warn

 Windows UI color constants
 Writing DEMO on an image

X

xyzcnv

Y

ycbcr2rgb
 YesNo

 YesNoCancel

Z

Z
 zoomFactor

	Index
	Command Reference
	Dialog Functions
	Image Functions
	System Functions
	C Runtime Functions
	Alphabetic Index

